1
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Newton T, Allison R, Edgar JR, Lumb JH, Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, Schüle R, Depienne C, Goldberg L, Frahm C, Stevanin G, Durr A, Schöls L, Winner B, Beetz C, Reid E. Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 2019; 141:1286-1299. [PMID: 29481671 PMCID: PMC5917785 DOI: 10.1093/brain/awy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.
Collapse
Affiliation(s)
- Timothy Newton
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Rachel Allison
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - James R Edgar
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer H Lumb
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Catherine E Rodger
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | | | - Larissa Arning
- Department of Human Genetics, Ruhr-University, Bochum, Germany
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Christel Depienne
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Lisa Goldberg
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Giovanni Stevanin
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Alexandra Durr
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Beate Winner
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
3
|
Rudenskaya GE, Kadnikova VA, Ryzhkova OP. [Common forms of hereditary spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:94-104. [PMID: 30874534 DOI: 10.17116/jnevro201911902194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A group of hereditary spastic paraplegias includes about 80 spastic paraplegia genes (SPG): forms with identified (almost 70) or only mapped (about 10) genes. Methods of next generation sequencing (NGS), along with new SPG discovering, modify knowledge about earlier delineated SPG. Clinical and genetic characteristics of common autosomal dominant (SPG4, SPG3, SPG31) and autosomal recessive (SPG11, SPG7, SPG15) forms are presented.
Collapse
Affiliation(s)
| | - V A Kadnikova
- Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
4
|
Tsuchiya M, Koh K, Ishida A, Ichinose Y, Shindo K, Takiyama Y. A Japanese family with a novel nonsense mutation in the spastin gene associated with both cerebellar ataxia and cognitive impairment. J Neurol Sci 2019; 397:114-116. [PMID: 30599301 DOI: 10.1016/j.jns.2018.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Mai Tsuchiya
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Aki Ishida
- Department of Rehabilitation, Yamanashi University Hospital, Japan
| | - Yuta Ichinose
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazumasa Shindo
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
5
|
Kamada T, Miura S, Kida H, Irie KI, Yamanishi Y, Hoshino T, Taniwaki T. MIBG myocardial scintigraphy in progressive supranuclear palsy. J Neurol Sci 2019; 396:3-7. [DOI: 10.1016/j.jns.2018.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
|
6
|
Rudenskaya GE, Kadnikova VA, Sidorova OP, Beetz C, Illarioshkin SN, Dadaly EL, Proskokova TN, Ryzhkova OP. Hereditary spastic paraplegia type 4 (SPG4) in Russian patients. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:11-20. [DOI: 10.17116/jnevro201911911111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Elert-Dobkowska E, Stepniak I, Krysa W, Rajkiewicz M, Rakowicz M, Sobanska A, Rudzinska M, Wasielewska A, Pilch J, Kubalska J, Lipczynska-Lojkowska W, Kulczycki J, Kurdziel K, Sikorska A, Beetz C, Zaremba J, Sulek A. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci 2015; 359:35-9. [PMID: 26671083 DOI: 10.1016/j.jns.2015.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022]
Abstract
Hereditary spastic paraplegias (HSPs) consist of a heterogeneous group of genetically determined neurodegenerative disorders. Progressive lower extremity weakness and spasticity are the prominent features of HSPs resulting from retrograde axonal degeneration of the corticospinal tracts. Three genetic types, SPG3 (ATL1), SPG4 (SPAST) and SPG31 (REEP1), appear predominantly and may account for up to 50% of autosomal dominant hereditary spastic paraplegias (AD-HSPs). Here, we present the results of genetic testing of the three mentioned SPG genetic types in a group of 216 unrelated Polish patients affected with spastic paraplegia. Molecular evaluation was performed by multiplex ligation-dependent probe amplification (MLPA) and DNA sequencing. Nineteen novel mutations: 13 in SPAST, 4 in ATL1 and 2 in REEP1, were identified among overall 50 different mutations detected in 57 families. Genetic analysis resulted in the identification of molecular defects in 54% of familial and 8.4% of isolated cases. Our research expanded the causative mutations spectrum of the three most common genetic forms of HSPs found in a large cohort of probands originating from the Central Europe.
Collapse
Affiliation(s)
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Rudzinska
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jacek Pilch
- Department of Pediatric Neurology, Medical University of Silesia, Katowice, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Jerzy Kulczycki
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna Kurdziel
- Department of Pediatric Neurology, St. Ludwig's Children Hospital, Krakow, Poland
| | - Agata Sikorska
- Department of Genetics and Animal Breeding, University of Life Sciences, Poznan, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland; Division Five of Medical Sciences, Polish Academy of Science, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
8
|
Wang K, Zhao G. Exon 8-17 deletions of SPAST in a Chinese family with hereditary spastic paraplegia: a case report and literature review. J Neurol Sci 2015; 357:282-4. [PMID: 26165777 DOI: 10.1016/j.jns.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurodegenerative disorders. SPG4 is the most common autosomal dominant form of HSP subtypes and is caused by mutations of the SPAST gene. Here we reported a Chinese family with HSP caused by deletion of exons 8-17 of the SPAST gene and reviewed the clinical phenotypes of patients with exon deletion that were reported in literatures. The patients with deletions of exons in the SPAST gene showed pure HSP, and the age at onset showed interfamily and intrafamily variations. This study suggests that exon deletion should be examined routinely in patients who are clinically diagnosed with HSP.
Collapse
Affiliation(s)
- Kang Wang
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Guohua Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China.
| |
Collapse
|
9
|
Boone PM, Yuan B, Campbell IM, Scull JC, Withers MA, Baggett BC, Beck CR, Shaw CJ, Stankiewicz P, Moretti P, Goodwin WE, Hein N, Fink JK, Seong MW, Seo SH, Park SS, Karbassi ID, Batish SD, Ordóñez-Ugalde A, Quintáns B, Sobrido MJ, Stemmler S, Lupski JR. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet 2014; 95:143-61. [PMID: 25065914 PMCID: PMC4129405 DOI: 10.1016/j.ajhg.2014.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional--and possibly phenotypic--consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer C Scull
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marjorie A Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett C Baggett
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine J Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paolo Moretti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | - Nichole Hein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Geriatrics Research Education and Clinical Center, Ann Arbor, MI 48105, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | | | - Sat Dev Batish
- Quest Diagnostics, Athena Diagnostics, Worcester, MA 01605, USA
| | - Andrés Ordóñez-Ugalde
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - Beatriz Quintáns
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - María-Jesús Sobrido
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University, Bochum 44801, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Appocher C, Klima R, Feiguin F. Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates. Hum Mol Genet 2014; 23:6762-72. [DOI: 10.1093/hmg/ddu393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Racis L, Storti E, Pugliatti M, Agnetti V, Tessa A, Santorelli FM. Novel SPAST deletion and reduced DPY30 expression in a Spastic Paraplegia type 4 kindred. BMC MEDICAL GENETICS 2014; 15:39. [PMID: 24690193 PMCID: PMC3974227 DOI: 10.1186/1471-2350-15-39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/12/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND The hereditary spastic paraplegias (HSPs) are pleiomorphic disorders of motor pathway and a large number of affected genes have been discovered. Yet, mutations in SPG4/SPAST represent the most frequent molecular etiology in autosomal dominant (AD) patients and sporadic cases. We describe a large, AD-HSP Sardinian family where 5 out of several living members harbored a novel deletion affecting also the 5'UTR of SPAST and resulting in reduced expression of DPY30, the gene located upstream SPAST in a head-to-head manner. CASE PRESENTATION A 54-year-old woman manifested leg stiffness at age 39 and required a cane to walk at age 50. Neurological examination disclosed mild spasticity and weakness in the legs, hyperreflexia in all limbs, and bilateral Babinski sign. She also complained of urinary urgency, but no additional neurological symptoms or signs were detected at examination. The clinical examination of 24 additional relatives disclosed three further affected individuals, two men and one woman. In the four symptomatic patients the initial manifestations were walking abnormalities and leg stiffness with a mean age at onset (SD) of 46.75 (5.44) years (range 39-51). The mean disease duration was 13.2 (13.4) years (range 6-35), and it correlated well with clinical severity (SPRS score) (r = 0.975, p = 0.005). One patient was confined to bed and displayed knee and ankle contractures, another case needed a cane to walk, and two individuals were able to walk without aids. Interestingly, a patient had also had a miscarriage during her first pregnancy.Gene testing revealed an heterozygous deletion spanning from the 5'-UTR to intron 4 of SPAST in the affected individuals and in one clinically unaffected woman. In three affected patients, the deletion also determined low mRNA levels of SPAST and DPY30, a component of the Set1-like multiprotein histone methyltransferase complex located upstream, head-to-head with SPAST. CONCLUSION Together with data described in a Japanese family, our findings seem to suggest that genes close to spastin might be candidates in modulating the clinical phenotype. This report endorses future research on the role of neighboring genes as potential players in SPG4 disease variability.
Collapse
Affiliation(s)
- Loretta Racis
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Eugenia Storti
- IRCCS Stella Maris, via dei Giacinti 2, 56028 Pisa, Italy
| | - Maura Pugliatti
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Virgilio Agnetti
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
12
|
Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 2012; 318:1-18. [PMID: 22554690 DOI: 10.1016/j.jns.2012.03.025] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
Collapse
|