1
|
Tugizova M, Margeta M, Richie M, Pet D, Rosow L, Terrelonge M, Ralph JW. Severe Adult-Onset Non-Dystrophic Myotonia With Apnea and Laryngospasm Due to Digenic Inheritance of SCN4A and CLCN1 Variants: A Case Report. Neurol Genet 2025; 11:e200223. [PMID: 39703462 PMCID: PMC11655165 DOI: 10.1212/nxg.0000000000200223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 12/21/2024]
Abstract
Objectives To report a case of adult-onset non-dystrophic myotonia complicated by recurrent episodes of laryngospasm. Methods The patient is a 35-year-old man who was admitted to our hospital for recurrent episodes of apnea requiring endotracheal intubation with mechanical ventilation. He underwent extensive evaluation, including EMG, laryngoscopy, muscle biopsy, and genetic testing, which revealed a diagnosis of non-dystrophic myotonia. Results His myotonic disorder was due to the synergistic effects of a pathogenic CLCN1 variant and a newly reported SCN4A variant. His muscle biopsy demonstrated myofibrillar disorganization with Z-band streaming, which may reflect the severity of his clinical and electrographic myotonia. Treatment with mexiletine resulted in resolution of his episodes of laryngospasm and symptoms of myotonia in the extremities. Discussion Our case adds to the literature on the potentiating effects of chloride channelopathies on sodium channel myotonia. This is the first reported case of an adult-onset sodium channelopathy manifesting with respiratory failure due to laryngospasm. In addition, we present muscle biopsy findings that have not been described in the recent literature. This case also highlights that a myotonic disorder should be considered in the differential diagnosis for recurrent episodes of mixed hypoxic and hypercarbic respiratory failure.
Collapse
Affiliation(s)
| | - Marta Margeta
- Department of Pathology, University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
2
|
Campanale C, Laghetti P, Saltarella I, Altamura C, Canioni E, Iosa E, Maggi L, Brugnoni R, Tacconi P, Desaphy JF. A c.1775C > T Point Mutation of Sodium Channel Alfa Subunit Gene (SCN4A) in a Three-Generation Sardinian Family with Sodium Channel Myotonia. J Neuromuscul Dis 2024; 11:725-734. [PMID: 38427496 DOI: 10.3233/jnd-230134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.
Collapse
Affiliation(s)
- Carmen Campanale
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Laghetti
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Canioni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Iosa
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Tacconi
- Centro Regionale per la Sclerosi Multipla, Ospedale Binaghi, Cagliari, Italy
| | - Jean-François Desaphy
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Vacchiano V, Brugnoni R, Campanale C, Imbrici P, Dinoi G, Canioni E, Laghetti P, Saltarella I, Altamura C, Maggi L, Liguori R, Donadio V, Desaphy JF. Coexistence of SCN4A and CLCN1 mutations in a family with atypical myotonic features: A clinical and functional study. Exp Neurol 2023; 362:114342. [PMID: 36720299 DOI: 10.1016/j.expneurol.2023.114342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysiological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p.K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Raffaella Brugnoni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Carmen Campanale
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Dept. of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Dinoi
- Dept. of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Canioni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Paola Laghetti
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Rocco Liguori
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Jean-François Desaphy
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Pagliarani S, Meola G, Filareti M, Comi GP, Lucchiari S. Case report: Sodium and chloride muscle channelopathy coexistence: A complicated phenotype and a challenging diagnosis. Front Neurol 2022; 13:845383. [PMID: 36081873 PMCID: PMC9447429 DOI: 10.3389/fneur.2022.845383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Non-dystrophic myotonias (NDM) encompass chloride and sodium channelopathy. Mutations in CLCN1 lead to either the autosomal dominant form or the recessive form of myotonia congenita (MC). The main symptom is stiffness worsening after rest and improving by physical exercise. Patients with recessive mutations often show muscle hypertrophy, and transient weakness mostly in their lower limbs. Mutations in SCN4A can lead to Hyper-, Hypo- or Normo-kalemic Periodic Paralysis or to different forms of myotonia (Paramyotonia Congenita-PMC and Sodium Channel Myotonia-SCM and severe neonatal episodic laryngospasm-SNEL). SCM often presents facial muscle stiffness, cold sensitivity, and muscle pain, whereas myotonia worsens in PMC patients with the repetition of the muscle activity and cold. Patients affected by chloride or sodium channelopathies may show similar phenotypes and symptoms, making the diagnosis more difficult to reach. Herein we present a woman in whom sodium and chloride channelopathies coexist yielding a complex phenotype with features typical of both MC and PMC. Disease onset was in the second decade with asthenia, weakness, warm up and limb stiffness, and her symptoms had been worsening through the years leading to frequent heavy retrosternal compression, tachycardia, stiffness, and symmetrical pain in her lower limbs. She presented severe lid lag myotonia, a hypertrophic appearance at four limbs and myotonic discharges at EMG. Her symptoms have been triggered by exposure to cold and her daily life was impaired. All together, clinical signs and instrumental data led to the hypothesis of PMC and to the administration of mexiletine, then replaced by acetazolamide because of gastrointestinal side effects. Analysis of SCN4A revealed a new variant, p.Glu1607del. Nonetheless the severity of myotonia in the lower limbs and her general stiffness led to hypothesize that the impairment of sodium channel, Nav1.4, alone could not satisfactorily explain the phenotype and a second genetic “factor” was hypothesized. CLCN1 was targeted, and p.Met485Val was detected in homozygosity. This case highlights that proper identification of signs and symptoms by an expert neurologist is crucial to target a successful genetic diagnosis and appropriate therapy.
Collapse
Affiliation(s)
- Serena Pagliarani
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Melania Filareti
- Department of Neurorehabilitation Sciences Casa di Cura del Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Lucchiari
- Department of Neurological Sciences, Dino Ferrari Centre, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- *Correspondence: Sabrina Lucchiari
| |
Collapse
|
5
|
Suetterlin K, Matthews E, Sud R, McCall S, Fialho D, Burge J, Jayaseelan D, Haworth A, Sweeney MG, Kullmann DM, Schorge S, Hanna MG, Männikkö R. Translating genetic and functional data into clinical practice: a series of 223 families with myotonia. Brain 2022; 145:607-620. [PMID: 34529042 PMCID: PMC9014745 DOI: 10.1093/brain/awab344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022] Open
Abstract
High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.
Collapse
Affiliation(s)
- Karen Suetterlin
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle-upon-Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle-upon-Tyne, UK
| | - Emma Matthews
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Atkinson Morley Neuromuscular Centre, Department of Neurology, St Georges University Hospitals NHS Foundation Trust, London, UK
| | - Richa Sud
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel McCall
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Doreen Fialho
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - James Burge
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital, London, UK
| | - Dipa Jayaseelan
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Haworth
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Mary G Sweeney
- Neurogenetics Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Michael G Hanna
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Roope Männikkö
- MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Nan H, Wu Y, Cui S, Sun H, Wang J, Li Y, Meng L, Nagasaka T, Wu L. Coexistence of Charcot-Marie-Tooth 1A and nondystrophic myotonia due to PMP22 duplication and SCN4A pathogenic variants: a case report. BMC Neurol 2022; 22:17. [PMID: 34996390 PMCID: PMC8740465 DOI: 10.1186/s12883-021-02538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. CASE PRESENTATION We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband's father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. CONCLUSION This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunqing Wu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shilei Cui
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Houliang Sun
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Takamura Nagasaka
- Department of Neurology, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi, 409-3898, Japan
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
8
|
Brenes O, Barbieri R, Vásquez M, Vindas-Smith R, Roig J, Romero A, del Valle G, Bermúdez-Guzmán L, Bertelli S, Pusch M, Morales F. Functional and Structural Characterization of ClC-1 and Na v1.4 Channels Resulting from CLCN1 and SCN4A Mutations Identified Alone and Coexisting in Myotonic Patients. Cells 2021; 10:cells10020374. [PMID: 33670307 PMCID: PMC7918176 DOI: 10.3390/cells10020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Non-dystrophic myotonias have been linked to loss-of-function mutations in the ClC-1 chloride channel or gain-of-function mutations in the Nav1.4 sodium channel. Here, we describe a family with members diagnosed with Thomsen’s disease. One novel mutation (p.W322*) in CLCN1 and one undescribed mutation (p.R1463H) in SCN4A are segregating in this family. The CLCN1-p.W322* was also found in an unrelated family, in compound heterozygosity with the known CLCN1-p.G355R mutation. One reported mutation, SCN4A-p.T1313M, was found in a third family. Both CLCN1 mutations exhibited loss-of-function: CLCN1-p.W322* probably leads to a non-viable truncated protein; for CLCN1-p.G355R, we predict structural damage, triggering important steric clashes. The SCN4A-p.R1463H produced a positive shift in the steady-state inactivation increasing window currents and a faster recovery from inactivation. These gain-of-function effects are probably due to a disruption of interaction R1463-D1356, which destabilizes the voltage sensor domain (VSD) IV and increases the flexibility of the S4-S5 linker. Finally, modelling suggested that the p.T1313M induces a strong decrease in protein flexibility on the III-IV linker. This study demonstrates that CLCN1-p.W322* and SCN4A-p.R1463H mutations can act alone or in combination as inducers of myotonia. Their co-segregation highlights the necessity for carrying out deep genetic analysis to provide accurate genetic counseling and management of patients.
Collapse
Affiliation(s)
- Oscar Brenes
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, 11501 San José, Costa Rica;
- Centro de Investigación en Neurociencias (CIN), Universidad de Costa Rica, 11501 San José, Costa Rica
| | | | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Jeffrey Roig
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Adarli Romero
- Escuela de Biología, Universidad de Costa Rica, 11501 San José, Costa Rica;
| | - Gerardo del Valle
- Laboratorio de Neurofisiología (Neurolab), 11801 San José, Costa Rica;
| | - Luis Bermúdez-Guzmán
- Sección de Genética y Biotecnología, Escuela de Biología, Universidad de Costa Rica, 11501 San José, Costa Rica;
| | - Sara Bertelli
- Istituto di Biofisica, CNR, 16149 Genova, Italy; (R.B.); (S.B.)
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Michael Pusch
- Istituto di Biofisica, CNR, 16149 Genova, Italy; (R.B.); (S.B.)
- Correspondence: (M.P.); (F.M.); Tel.: +39-0106475-553/522 (M.P.); +506-2511-2124 (F.M.)
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
- Correspondence: (M.P.); (F.M.); Tel.: +39-0106475-553/522 (M.P.); +506-2511-2124 (F.M.)
| |
Collapse
|
9
|
Desaphy JF, Altamura C, Vicart S, Fontaine B. Targeted Therapies for Skeletal Muscle Ion Channelopathies: Systematic Review and Steps Towards Precision Medicine. J Neuromuscul Dis 2021; 8:357-381. [PMID: 33325393 PMCID: PMC8203248 DOI: 10.3233/jnd-200582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle ion channelopathies include non-dystrophic myotonias (NDM), periodic paralyses (PP), congenital myasthenic syndrome, and recently identified congenital myopathies. The treatment of these diseases is mainly symptomatic, aimed at reducing muscle excitability in NDM or modifying triggers of attacks in PP. OBJECTIVE This systematic review collected the evidences regarding effects of pharmacological treatment on muscle ion channelopathies, focusing on the possible link between treatments and genetic background. METHODS We searched databases for randomized clinical trials (RCT) and other human studies reporting pharmacological treatments. Preclinical studies were considered to gain further information regarding mutation-dependent drug effects. All steps were performed by two independent investigators, while two others critically reviewed the entire process. RESULTS For NMD, RCT showed therapeutic benefits of mexiletine and lamotrigine, while other human studies suggest some efficacy of various sodium channel blockers and of the carbonic anhydrase inhibitor (CAI) acetazolamide. Preclinical studies suggest that mutations may alter sensitivity of the channel to sodium channel blockers in vitro, which has been translated to humans in some cases. For hyperkalemic and hypokalemic PP, RCT showed efficacy of the CAI dichlorphenamide in preventing paralysis. However, hypokalemic PP patients carrying sodium channel mutations may have fewer benefits from CAI compared to those carrying calcium channel mutations. Few data are available for treatment of congenital myopathies. CONCLUSIONS These studies provided limited information about the response to treatments of individual mutations or groups of mutations. A major effort is needed to perform human studies for designing a mutation-driven precision medicine in muscle ion channelopathies.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Savine Vicart
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Bertrand Fontaine
- Sorbonne Université, INSERM, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Myologie-UMR 974, Reference center in neuro-muscular channelopathies, Institute of Myology, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
10
|
Brugnoni R, Maggi L, Canioni E, Verde F, Gallone A, Ariatti A, Filosto M, Petrelli C, Logullo FO, Esposito M, Ruggiero L, Tonin P, Riguzzi P, Pegoraro E, Torri F, Ricci G, Siciliano G, Silani V, Merlini L, De Pasqua S, Liguori R, Pini A, Mariotti C, Moroni I, Imbrici P, Desaphy JF, Mantegazza R, Bernasconi P. Next-generation sequencing application to investigate skeletal muscle channelopathies in a large cohort of Italian patients. Neuromuscul Disord 2020; 31:336-347. [PMID: 33573884 DOI: 10.1016/j.nmd.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Non-dystrophic myotonias and periodic paralyses are a heterogeneous group of disabling diseases classified as skeletal muscle channelopathies. Their genetic characterization is essential for prognostic and therapeutic purposes; however, several genes are involved. Sanger-based sequencing of a single gene is time-consuming, often expensive; thus, we designed a next-generation sequencing panel of 56 putative candidate genes for skeletal muscle channelopathies, codifying for proteins involved in excitability, excitation-contraction coupling, and metabolism of muscle fibres. We analyzed a large cohort of 109 Italian patients with a suspect of NDM or PP by next-generation sequencing. We identified 24 patients mutated in CLCN1 gene, 15 in SCN4A, 3 in both CLCN1 and SCN4A, 1 in ATP2A1, 1 in KCNA1 and 1 in CASQ1. Eight were novel mutations: p.G395Cfs*32, p.L843P, p.V829M, p.E258E and c.1471+4delTCAAGAC in CLCN1, p.K1302R in SCN4A, p.L208P in ATP2A1 and c.280-1G>C in CASQ1 genes. This study demonstrated the utility of targeted next generation sequencing approach in molecular diagnosis of skeletal muscle channelopathies and the importance of the collaboration between clinicians and molecular geneticists and additional methods for unclear variants to make a conclusive diagnosis.
Collapse
Affiliation(s)
- Raffaella Brugnoni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Lorenzo Maggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Canioni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Annamaria Gallone
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Ariatti
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | - Marcello Esposito
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive, and Odontostomatological Sciences, University Federico II, Naples, Italy
| | - Paola Tonin
- Neurological Clinic, University of Verona, Verona, Italy
| | - Pietro Riguzzi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Luciano Merlini
- DIBINEM-Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia De Pasqua
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
Maggi L, Brugnoni R, Canioni E, Tonin P, Saletti V, Sola P, Piccinelli SC, Colleoni L, Ferrigno P, Pini A, Masson R, Manganelli F, Lietti D, Vercelli L, Ricci G, Bruno C, Tasca G, Pizzuti A, Padovani A, Fusco C, Pegoraro E, Ruggiero L, Ravaglia S, Siciliano G, Morandi L, Dubbioso R, Mongini T, Filosto M, Tramacere I, Mantegazza R, Bernasconi P. Clinical and Molecular Spectrum of Myotonia and Periodic Paralyses Associated With Mutations in SCN4A in a Large Cohort of Italian Patients. Front Neurol 2020; 11:646. [PMID: 32849172 PMCID: PMC7403394 DOI: 10.3389/fneur.2020.00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Four main clinical phenotypes have been traditionally described in patients mutated in SCN4A, including sodium-channel myotonia (SCM), paramyotonia congenita (PMC), Hypokaliemic type II (HypoPP2), and Hyperkaliemic/Normokaliemic periodic paralysis (HyperPP/NormoPP); in addition, rare phenotypes associated with mutations in SCN4A are congenital myasthenic syndrome and congenital myopathy. However, only scarce data have been reported in literature on large patient cohorts including phenotypes characterized by myotonia and episodes of paralysis. Methods: We retrospectively investigated clinical and molecular features of 80 patients fulfilling the following criteria: (1) clinical and neurophysiological diagnosis of myotonia, or clinical diagnosis of PP, and (2) presence of a pathogenic SCN4A gene variant. Patients presenting at birth with episodic laryngospasm or congenital myopathy-like phenotype with later onset of myotonia were considered as neonatal SCN4A. Results: PMC was observed in 36 (45%) patients, SCM in 30 (37.5%), Hyper/NormoPP in 7 (8.7%), HypoPP2 in 3 (3.7%), and neonatal SCN4A in 4 (5%). The median age at onset was significantly earlier in PMC than in SCM (p < 0.01) and in Hyper/NormoPP than in HypoPP2 (p = 0.02). Cold-induced myotonia was more frequently observed in PMC (n = 34) than in SCM (n = 23) (p = 0.04). No significant difference was found in age at onset of episodes of paralysis among PMC and PP or in frequency of permanent weakness between PP (n = 4), SCM (n = 5), and PMC (n = 10). PP was more frequently associated with mutations in the S4 region of the NaV1.4 channel protein compared to SCM and PMC (p < 0.01); mutations causing PMC were concentrated in the C-terminal region of the protein, while SCM-associated mutations were detected in all the protein domains. Conclusions: Our data suggest that skeletal muscle channelopathies associated with mutations in SCN4A represent a continuum in the clinical spectrum.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Brugnoni
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Canioni
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Tonin
- Section of Clinical Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Patrizia Sola
- Clinica Neurologica, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Lara Colleoni
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Ferrigno
- SC Neurologia e Stroke Unit, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | | | - Liliana Vercelli
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, Istituto Giannina Gaslini, Genova, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Dipartimento di Scienze Dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Pizzuti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratory of Medical Genetics, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Carlo Fusco
- Dipartimento Materno-Infantile, S.C. Neuropsichiatria Infantile, Presidio Ospedaliero Provinciale Santa Maria Nuova, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Morandi
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Tiziana Mongini
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Irene Tramacere
- Research and Clinical Development Department, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Vivekanandam V, Männikkö R, Matthews E, Hanna MG. Improving genetic diagnostics of skeletal muscle channelopathies. Expert Rev Mol Diagn 2020; 20:725-736. [PMID: 32657178 DOI: 10.1080/14737159.2020.1782195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes have improved diagnostic accuracy and yield. AREAS COVERED We discuss diagnostic advances since the advent of next-generation sequencing and the role of whole exome and genome sequencing. Advances in genotype-phenotype-functional correlations have improved understanding of inheritance and phenotypes. We outline new phenotypes, particularly in the pediatric setting and consider co-existing mutations that may act as genetic modifiers. We also discuss four newly identified genes associated with skeletal muscle channelopathies. EXPERT OPINION Next-generation sequencing using gene panels has improved diagnostic rates, identified new mutations, and discovered patients with co-existing pathogenic mutations ('double trouble'). This field has previously focussed on single genes, but we are now beginning to understand interactions between co-existing mutations, genetic modifiers, and their role in pathomechanisms. New genetic observations in pediatric presentations of channelopathies broadens our understanding of the conditions. Genetic and mechanistic advances have increased the potential to develop treatments.
Collapse
Affiliation(s)
- Vinojini Vivekanandam
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Roope Männikkö
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Emma Matthews
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| |
Collapse
|
13
|
Zhao C, Tang D, Huang H, Tang H, Yang Y, Yang M, Luo Y, Tao H, Tang J, Zhou X, Shi X. Myotonia congenita and periodic hypokalemia paralysis in a consanguineous marriage pedigree: Coexistence of a novel CLCN1 mutation and an SCN4A mutation. PLoS One 2020; 15:e0233017. [PMID: 32407401 PMCID: PMC7224471 DOI: 10.1371/journal.pone.0233017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - DongFang Tang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyan Tang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Intensive Care Unit, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Yang
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai Tao
- Depatment of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| |
Collapse
|
14
|
Altamura C, Desaphy JF, Conte D, De Luca A, Imbrici P. Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Arch 2020; 472:961-975. [PMID: 32361781 DOI: 10.1007/s00424-020-02376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
15
|
Morales F, Pusch M. An Up-to-Date Overview of the Complexity of Genotype-Phenotype Relationships in Myotonic Channelopathies. Front Neurol 2020; 10:1404. [PMID: 32010054 PMCID: PMC6978732 DOI: 10.3389/fneur.2019.01404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic disorders are inherited neuromuscular diseases divided into dystrophic myotonias and non-dystrophic myotonias (NDM). The latter is a group of dominant or recessive diseases caused by mutations in genes encoding ion channels that participate in the generation and control of the skeletal muscle action potential. Their altered function causes hyperexcitability of the muscle membrane, thereby triggering myotonia, the main sign in NDM. Mutations in the genes encoding voltage-gated Cl− and Na+ channels (respectively, CLCN1 and SCN4A) produce a wide spectrum of phenotypes, which differ in age of onset, affected muscles, severity of myotonia, degree of hypertrophy, and muscle weakness, disease progression, among others. More than 200 CLCN1 and 65 SCN4A mutations have been identified and described, but just about half of them have been functionally characterized, an approach that is likely extremely helpful to contribute to improving the so-far rather poor clinical correlations present in NDM. The observed poor correlations may be due to: (1) the wide spectrum of symptoms and overlapping phenotypes present in both groups (Cl− and Na+ myotonic channelopathies) and (2) both genes present high genotypic variability. On the one hand, several mutations cause a unique and reproducible phenotype in most patients. On the other hand, some mutations can have different inheritance pattern and clinical phenotypes in different families. Conversely, different mutations can be translated into very similar phenotypes. For these reasons, the genotype-phenotype relationships in myotonic channelopathies are considered complex. Although the molecular bases for the clinical variability present in myotonic channelopathies remain obscure, several hypotheses have been put forward to explain the variability, which include: (a) differential allelic expression; (b) trans-acting genetic modifiers; (c) epigenetic, hormonal, or environmental factors; and (d) dominance with low penetrance. Improvements in clinical tests, the recognition of the different phenotypes that result from particular mutations and the understanding of how a mutation affects the structure and function of the ion channel, together with genetic screening, is expected to improve clinical correlation in NDMs.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud, Universidad de Costa, San José, Costa Rica
| | | |
Collapse
|
16
|
Myotonia in a patient with a mutation in an S4 arginine residue associated with hypokalaemic periodic paralysis and a concomitant synonymous CLCN1 mutation. Sci Rep 2019; 9:17560. [PMID: 31772215 PMCID: PMC6879752 DOI: 10.1038/s41598-019-54041-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy.
Collapse
|
17
|
Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacol Res 2019; 141:224-235. [DOI: 10.1016/j.phrs.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|