1
|
D'haeseleer P, Johnson SL, Davenport KW, Chain PS, Schoeniger J, Ray D, Sinha A, Williams KP, Peña J, Branda SS, El-Etr S. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6. GENOME ANNOUNCEMENTS 2016; 4:e00649-16. [PMID: 27365360 PMCID: PMC4929523 DOI: 10.1128/genomea.00649-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022]
Abstract
Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long.
Collapse
Affiliation(s)
- Patrik D'haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | | | | | - Patrick S Chain
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, USA
| | - Joe Schoeniger
- Sandia National Laboratories (SNL), Livermore, California, USA
| | - Debjit Ray
- Sandia National Laboratories (SNL), Livermore, California, USA
| | - Anupama Sinha
- Sandia National Laboratories (SNL), Livermore, California, USA
| | | | - José Peña
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Steven S Branda
- Sandia National Laboratories (SNL), Livermore, California, USA
| | - Sahar El-Etr
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| |
Collapse
|
2
|
Dominant short repeated sequences in bacterial genomes. Genomics 2015; 105:175-81. [PMID: 25561351 DOI: 10.1016/j.ygeno.2014.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022]
Abstract
We use a novel multidimensional searching approach to present the first exhaustive search for all possible repeated sequences in 166 genomes selected to cover the bacterial domain. We found an overrepresentation of repeated sequences in all but one of the genomes. The most prevalent repeats by far were related to interspaced short palindromic repeats (CRISPRs)—conferring bacterial adaptive immunity. We identified a deep branching clade of thermophilic Firmicutes containing the highest number of CRISPR repeats. We also identified a high prevalence of tandem repeated heptamers. In addition, we identified GC-rich repeats that could potentially be involved in recombination events. Finally, we identified repeats in a 16322 amino acid mega protein (involved in biofilm formation) and inverted repeats flanking miniature transposable elements (MITEs). In conclusion, the exhaustive search for repeated sequences identified new elements and distribution of these, which has implications for understanding both the ecology and evolution of bacteria.
Collapse
|
3
|
Yi H, Song H, Hwang J, Kim K, Nierman WC, Kim HS. The tandem repeats enabling reversible switching between the two phases of β-lactamase substrate spectrum. PLoS Genet 2014; 10:e1004640. [PMID: 25233343 PMCID: PMC4169377 DOI: 10.1371/journal.pgen.1004640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022] Open
Abstract
Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements—that we named SCSs (same-strand complementary sequences)—were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution. β-lactamases can adapt to new antibiotics by mutations in their genes. The original and the extended substrate spectrums of β-lactamases define two phases of catalytic activity, and the conversion by point mutations is unidirectional from the initial to the new spectrum. We describe duplication mutations that enable reversible switching between the substrate spectrums, increasing the adaptability of the bacterium. We provide evidence supporting that two distinct groups of short sequences mediated the formation of DNA duplications in β-lactamases: direct repeats and novel elements that we named, SCSs (same-strand complementary sequences). Our study suggests that DNA duplication processes mediated by both direct repeats and SCSs are not just limited to the β-lactamase genes but comprise a fundamental mechanism in bacterial genome evolution.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Han Song
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Junghyun Hwang
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Karan Kim
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Heenam Stanley Kim
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
4
|
Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, Radey M, Rohmer L, Haugen E, Gillett W, Wuthiekanun V, Peacock SJ, Kaul R, Miller SI, Manoil C, Jacobs MA. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 2012; 7:e36507. [PMID: 22615773 PMCID: PMC3352902 DOI: 10.1371/journal.pone.0036507] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/02/2012] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis.
Collapse
Affiliation(s)
- Hillary S Hayden
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Metruccio MME, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N, Hill SA, Scarlato V, Delany I. A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog 2009; 5:e1000710. [PMID: 20041170 PMCID: PMC2791445 DOI: 10.1371/journal.ppat.1000710] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/25/2009] [Indexed: 01/14/2023] Open
Abstract
Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals. Diversification strategies, through genetic switches that randomly turn genes on and off, occur in many pathogenic bacterial populations and confer adaptive advantages to new environments and evasion of host immune responses. This is often mediated by spontaneous changes in the length of short DNA sequence repeats located in protein-coding regions or upstream regulatory regions, leading to deactivation or alteration of the associated genes. In this study we describe how a repeat sequence, distally upstream of the promoter region, alters the expression of an important adhesin of N. meningitidis. We identify the major mediator of this control, a negative regulator NadR, which binds to sequences flanking the variable repeat. Changes in the spacing between these sequences affect the ability of NadR to shut down expression from the promoter. We also identify a relevant metabolite that can block NadR activity and therefore act as a signal to induce adhesin expression. This finding sheds new light on the role of DNA-repeats identified in intergenic regions for which no role could be hypothesised, and may be a model mechanism used by bacterial pathogens for fine-tuning diversity within the host. Elucidating these mechanisms can aid in our understanding and prevention of disease.
Collapse
Affiliation(s)
| | - Eva Pigozzi
- Novartis Vaccines and Diagnostics, Siena, Italy
| | | | | | | | - Stuart A. Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Vincenzo Scarlato
- Novartis Vaccines and Diagnostics, Siena, Italy
- Department of Biology, University of Bologna, Bologna, Italy
| | - Isabel Delany
- Novartis Vaccines and Diagnostics, Siena, Italy
- * E-mail:
| |
Collapse
|