1
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
2
|
Kim N, Ullah I, Chung K, Lee D, Cha MJ, Ban H, Choi CS, Kim S, Hwang KC, Kumar P, Lee SK. Targeted Delivery of Recombinant Heat Shock Protein 27 to Cardiomyocytes Promotes Recovery from Myocardial Infarction. Mol Pharm 2020; 17:2034-2043. [PMID: 32364395 DOI: 10.1021/acs.molpharmaceut.0c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is the leading cause of death worldwide. Apoptotic mechanisms are thought to play a significant role in cardiomyocyte death after MI. Increased production of heat shock proteins (Hsps) in cardiomyocytes is a normal response to promote tolerance and to reduce cell damage. Hsp27 is considered to be a therapeutic option for the treatment of ischemic heart disease due to its protective effects on hypoxia-induced apoptosis. Despite its antiapoptotic effects, the lack of strategies to deliver Hsp27 to the heart tissue in vivo limits its clinical applicability. In this study, we utilized an antibody against the angiotensin II type 1 (AT1) receptor, which is expressed immediately after ischemia/reperfusion in the heart of MI rats. To achieve cardiomyocyte-targeted Hsp27 delivery after ischemia/reperfusion, we employed the immunoglobulin-binding dimer ZZ, a modified domain of protein A, in conjunction with the AT1 receptor antibody. Using the AT1 receptor antibody, we achieved systemic delivery of ZZ-TAT-GFP fusion protein into the heart of MI rats. This approach enabled selective delivery of Hsp27 to cardiomyocytes, rescued cells from apoptosis, reduced the area of fibrosis, and improved cardiac function in the rat MI model, thus suggesting its applicability as a cardiomyocyte-targeted protein delivery system to inhibit apoptosis induced by ischemic injury.
Collapse
Affiliation(s)
- Nahyeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Samsung Bioepis, Incheon 21987, Korea
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Dahye Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Green Cross Cell Co., Yongin 16924, Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Hongseok Ban
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Ildong Pharmaceutical Co., Ltd., Hwaseong 445-710, Korea
| | - Chang Seon Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Sunghwa Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea.,LG Household & Health Care, Seoul 150-721, Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
3
|
Ciocci Pardo A, González Arbeláez LF, Fantinelli JC, Aiello EA, Mosca SM. Calcineurin/P38MAPK/HSP27-dependent pathways are involved in the attenuation of postischemic mitochondrial injury afforded by sodium bicarbonate co-transporter (NBCe1) inhibition. Biochem Pharmacol 2019; 161:26-36. [PMID: 30615862 DOI: 10.1016/j.bcp.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
The electrogenic sodium bicarbonate co-transporter isoform 1 (NBCe1) plays an important role in ischemia-reperfusion injury. The cardioprotective action of an antibody directed to the extracellular loop 3 (a-L3) of NBCe1 was previously demonstrated by us. However, the role of a-L3 on mitochondrial post-ischemic alterations has not yet been determined. In this study, we aimed to elucidate the effects of a-L3 on post-ischemic mitochondrial state and dynamics analysing the involved mechanisms. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC): 110 min of perfusion; 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R); 3) a-L3: a-L3 was administered during the initial 10 min of R; 4) SB + a-L3: SB202190 (p38MAPK inhibitor) plus a-L3. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP), maximal velocities of rise and decay of LVP (+dP/dt max, -dP/dt max) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function. Mitochondrial Ca2+ response (CaR), Ca2+ retention capacity (CRC), membrane potential (ΔΨm) and MnSOD levels were measured. The expression of P-p38MAPK, calcineurin, P-HSP27, P-Drp1, Drp1, and OPA1 were determined. a-L3 decreased IS, improved post-ischemic recovery of myocardial function, increased P-p38MAPK, P-HSP27, P-Drp1, cytosolic Drp1, and OPA1 expression and decreased calcineurin. These effects were abolished by p38MAPK inhibition with SB. These data show that NBCe1 inhibition by a-L3 limits the cell death, improves myocardial post-ischemic contractility and mitochondrial state and dynamic through calcium decrease/calcineurin inhibition-mediated p38MAPK activation and p38MAPK/HSP27-dependent pathways. Thus, we demonstrated that a-L3 is a potential therapeutic strategy in post-ischemic alterations.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares Dr Horacio E Cingolani, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Mao SY, Meng XY, Xu ZW, Zhang WC, Jin XH, Chen X, Zhou X, Li YM, Xu RC. The role of ZFP580, a novel zinc finger protein, in TGF-mediated cytoprotection against chemical hypoxia‑induced apoptosis in H9c2 cardiac myocytes. Mol Med Rep 2017; 15:2154-2162. [PMID: 28259939 PMCID: PMC5364886 DOI: 10.3892/mmr.2017.6236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Zing finger protein 580 (ZFP580) is a novel Cys2-His2 zinc-finger transcription factor that has an anti-apoptotic role in myocardial cells. It is involved in the endothelial transforming growth factor-β1 (TGF-β1) signal transduction pathway as a mothers against decapentaplegic homolog (Smad)2 binding partner. The aim of the present study was to determine the involvement of ZFP580 in TGF-β1-mediated cytoprotection against chemical hypoxia-induced apoptosis, using H9c2 cardiac myocytes. Hypoxia was chemically induced in H9c2 myocardial cells by exposure to cobalt chloride (CoCl2). In response to hypoxia, cell viability was decreased, whereas the expression levels of hypoxia inducible factor-1α and ZFP580 were increased. Pretreatment with TGF-β1 attenuated CoCl2-induced cell apoptosis and upregulated ZFP580 protein expression; however, these effects could be suppressed by SB431542, an inhibitor of TGF-β type I receptor and Smad2/3 phosphorylation. Furthermore, suppression of ZFP580 expression by RNA interference reduced the anti-apoptotic effects of TGF-β1 and thus increased CoCl2-induced apoptosis. B-cell lymphoma (Bcl)-2-associated X protein/Bcl-2 ratio, reactive oxygen species generation and caspase-3 activation were also increased following ZFP580 inactivation. In conclusion, these results indicate that ZFP580 is a component of the TGF-β1/Smad signaling pathway, and is involved in the protective effects of TGF-β1 against chemical hypoxia-induced cell apoptosis, through inhibition of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Shi-Yun Mao
- Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces, Leshan, Sichuan 614000, P.R. China
| | - Xiang-Yan Meng
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Zhong-Wei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Wen-Cheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Xiao-Han Jin
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Xi Chen
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, P.R. China
| | - Rui-Cheng Xu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| |
Collapse
|
5
|
Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep 2016; 6:30314. [PMID: 27444754 PMCID: PMC4957209 DOI: 10.1038/srep30314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/04/2016] [Indexed: 01/06/2023] Open
Abstract
This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons.
Collapse
|
6
|
Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations. Arch Pharm Res 2016; 39:1266-74. [PMID: 27381220 PMCID: PMC5037156 DOI: 10.1007/s12272-016-0786-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 12/04/2022]
Abstract
Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein’s nature, transduction efficiency and stability.
Collapse
|
7
|
Kim HJ, Kim MH, Kim JT, Lee WJ, Kim E, Lim KS, Kim JK, Yang YI, Park KD, Kim YH. Intracellular transduction of TAT-Hsp27 fusion protein enhancing cell survival and regeneration capacity of cardiac stem cells in acute myocardial infarction. J Control Release 2015; 215:55-72. [PMID: 26232724 DOI: 10.1016/j.jconrel.2015.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) results in the substantial loss of functional cardiomyocytes, which frequently leads to intractable heart disorders. Cardiac stem cells (CSCs) that retain the capacity to replace all cardiac cells might be a promising strategy for providing a source of new functional cardiomyocytes; however, the poor survival and engraftment of transplanted CSCs in the hostile environment of MI critically mitigate their therapeutic benefits. To capitalize their therapeutic potential, an ex vivo strategy in which CSCs were introduced to the recombinant heat shock protein 27 (Hsp27) through a TAT protein transduction domain for increasing the viability and engraftment in the infarcted myocardium was designed. A recombinant TAT fused Hsp27 (TAT-Hsp27) was able to enter CSCs in a dose-dependent manner. CSCs transduced with TAT-Hsp27 expressed not only endogenous Hsp27 but externally introduced Hsp27, resulting in substantial increase of their anti-oxidative and anti-apoptotic properties via suppressing reactive oxygen species production, the MAPKs signaling pathway, and caspase activation. TAT-Hsp27 enabled CSCs to be protected from apoptotic- and hypoxic-induced cell death during in vitro cardiomyogenic differentiation. In vivo studies demonstrated that CSCs transduced TAT-Hsp27 significantly increased the survival and engraftment in the acutely infarcted myocardium, which is closely related to caspase activity suppression. Finally, CSCs transduced TAT-Hsp27 improved cardiac function and attenuated cardiac remodeling in comparison with non-transduced CSCs. Overall, our approach, which is based on the ex vivo intracellular transduction of TAT-Hsp27 into CSCs before myocardial delivery, might be effective in treating MI.
Collapse
Affiliation(s)
- Hye Jung Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | - Myoung-Hun Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | - Jong Tae Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | - Won-Jin Lee
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | - Eunjung Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | - Kwang Suk Lim
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Jang Kyoung Kim
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Young Il Yang
- Paik Institute for Clinical Research, Inje University College of Medicine, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
8
|
Rai R, Chauhan SK, Singh VV, Rai M, Rai G. Heat shock protein 27 and its regulatory molecules express differentially in SLE patients with distinct autoantibody profiles. Immunol Lett 2015; 164:25-32. [PMID: 25655337 DOI: 10.1016/j.imlet.2015.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023]
Abstract
Generation of autoantigens of nuclear origin, like dsDNA and extractable nuclear antigens (ENA) have largely been associated with dysregulated apoptosis and defective clearance of apoptotic debris in SLE. Heat shock protein (HSP) 27 has been reported to have anti-apoptotic properties hence it was of interest to study the expression of HSP27 and its regulatory molecule Brn3a and hsa-miR-939 in SLE patients with distinct autoantibodies specificities. SLE patients were categorized into three subsets based on their distinct sero-positivity for either anti-dsDNA antibody alone (anti-dsDNA(+) group) or anti-ENA antibody alone (anti-ENA(+) group) or both (anti-dsDNA(+) ENA(+) group). We investigated the mRNA and protein expression of HSP27 and Brn3a in peripheral blood leukocytes (PBLs) by real-time reverse transcriptase PCR and Western blotting. Expression of apoptosis markers caspase 3 and poly (ADP-ribose) polymerase (PARP) was determined by Western blotting. Hsa-miR-939 expression was determined using TaqMan(®) miRNA assay. In this study, we report significant downregulation of HSP27 in anti-ENA(+) patients and increased expression of caspase 3 and PARP in both anti-ENA(+) and anti-dsDNA(+) SLE subsets. A negative correlation was observed between the expression of HSP27 and apoptosis markers caspase 3 and PARP. Decreased Brn3a expression was observed in anti-ENA(+) SLE patients, which correlated positively with HSP27 expression. Expression of hsa-miR-939, which has a potential target site for Brn3a 3' UTR, was also elevated specifically in anti-ENA(+) patients. The decreased expressions of HSP27, Brn3a along with elevated levels of hsa-miR-939 are selectively associated with anti-ENA(+) patients and HSP27 was observed to be inversely associated with apoptosis. These findings are suggestive of distinct regulatory processes operative in SLE patient subsets with different autoantibody specificities.
Collapse
Affiliation(s)
- Richa Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sudhir Kumar Chauhan
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Vikas Vikram Singh
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
9
|
Zhang LJ, Wu ZL, Wang KF, Liu Q, Zhuang HM, Wu G. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella. Ecol Evol 2015; 5:515-30. [PMID: 25691976 PMCID: PMC4314281 DOI: 10.1002/ece3.1380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 11/09/2022] Open
Abstract
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos-resistant homozygote (RR) and chlorpyrifos-susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide-resistant and insecticide-susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20,hsp90,Apaf-1, and caspase-7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf-1,caspase-9, and caspase-7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.
Collapse
Affiliation(s)
- Lin Jie Zhang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| | - Zhao Li Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| | - Kuan Fu Wang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| | - Qun Liu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| | - Hua Mei Zhuang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry UniversityFuzhou, 350002, China
| |
Collapse
|
10
|
Dual-mode enhancement of metallothionein protein with cell transduction and retention peptide fusion. J Control Release 2013; 171:193-200. [DOI: 10.1016/j.jconrel.2013.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/14/2013] [Accepted: 07/02/2013] [Indexed: 02/04/2023]
|
11
|
Bae KH, Wang LS, Kurisawa M. Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B 2013; 1:5371-5388. [PMID: 32261243 DOI: 10.1039/c3tb20940g] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decades, injectable hydrogels have emerged as promising biomaterials because of their biocompatibility, excellent permeability, minimal invasion, and easy integration into surgical procedures. These systems provide an effective and convenient way to administer a wide variety of bioactive agents such as proteins, genes, and even living cells. Additionally, they can be designed to be degradable and eventually cleared from the body after completing their missions. Given their unique characteristics, injectable biodegradable hydrogels have been actively explored as drug reservoir systems for sustained release of bioactive agents and temporary extracellular matrices for tissue engineering. This review provides an overview of state-of-the-art strategies towards constructing a rational design of injectable biodegradable hydrogels for protein drug delivery and tissue engineering. We also discuss the use of injectable hydrogels for gene delivery systems and biomedical adhesives.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669.
| | | | | |
Collapse
|
12
|
Lee J, Cha MJ, Lim KS, Kim JK, Lee SK, Kim YH, Hwang KC, Lee KY. Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model. J Drug Target 2013; 21:822-9. [DOI: 10.3109/1061186x.2013.829072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|
14
|
Lim KS, Cha MJ, Kim JK, Park EJ, Chae JW, Rhim T, Hwang KC, Kim YH. Protective effects of protein transduction domain-metallothionein fusion proteins against hypoxia- and oxidative stress-induced apoptosis in an ischemia/reperfusion rat model. J Control Release 2013; 169:306-12. [DOI: 10.1016/j.jconrel.2013.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/10/2013] [Accepted: 01/27/2013] [Indexed: 11/26/2022]
|
15
|
Shin SH, Lee J, Lim KS, Rhim T, Lee SK, Kim YH, Lee KY. Sequential delivery of TAT-HSP27 and VEGF using microsphere/hydrogel hybrid systems for therapeutic angiogenesis. J Control Release 2013; 166:38-45. [DOI: 10.1016/j.jconrel.2012.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/21/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
|
16
|
Tong XX, Wu D, Wang X, Chen HL, Chen JX, Wang XX, Wang XL, Gan L, Guo ZY, Shi GX, Zhang YZ, Jiang W. Ghrelin protects against cobalt chloride-induced hypoxic injury in cardiac H9c2 cells by inhibiting oxidative stress and inducing autophagy. Peptides 2012; 38:217-27. [PMID: 23000094 DOI: 10.1016/j.peptides.2012.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 10/27/2022]
Abstract
Ghrelin is a multifunctional peptide that actively protects against cardiovascular ischemic diseases, but the underlying mechanisms are unclear. We used CoCl(2) to mimic hypoxic conditions in cardiac H9c2 cells in order to study the mechanism by which ghrelin protects cardiac myocytes against hypoxic injury by regulating the content of intracellular ROS and autophagy levels. Cell apoptosis and necrosis were evaluated by the flow cytometry assay, Hoechst staining, and LDH activity. Cell viability was detected by the WST-1 assay; ROS levels were assessed using DCFH2-DA; and Nox1, catalase and Mn-SOD were assayed by real-time PCR and activity assays. LC3II was measured by Western blot analysis. We observed that CoCl(2) induced apoptosis and death of H9c2 cells in a dose- and time-dependent manner. This was characterized by an increase in cell apoptosis, LDH activity, ROS content, Nox1 expression, and autophagy levels and a decrease in cell viability, catalase, and Mn-SOD activities. Ghrelin treatment significantly attenuated CoCl(2)-induced hypoxic injury by decreasing cell apoptosis, LDH activity, ROS content, and Nox1 expression and increasing cell viability, autophagy levels, catalase, and Mn-SOD mRNA levels and activities. Further experiments revealed that inhibiting autophagy using 3-MA or AMPK pathway with compound C almost abrogated the induction of ghrelin in autophagy. This was associated with a decrease in cell viability and an increase in LDH activity. Our results indicate that ghrelin protected cardiac myocytes against CoCl(2)-induced hypoxic injury by decreasing Nox1 expression, increasing the expression and activity of endogenous antioxidant enzymes, and inducing protective autophagy in an AMPK-dependent manner.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Apoptosis/drug effects
- Autophagy/drug effects
- Catalase/metabolism
- Cell Hypoxia/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Cobalt
- Ghrelin/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- Oxidative Stress/drug effects
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Structure-Activity Relationship
- Superoxide Dismutase/metabolism
Collapse
Affiliation(s)
- Xin-Xin Tong
- College of Life Science, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu Y, MacRae TH. Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from Artemia franciscana. Biochem Cell Biol 2010; 88:937-46. [PMID: 21102656 DOI: 10.1139/o10-143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small heat shock proteins (sHSPs), which prevent irreversible protein denaturation and inhibit apoptosis, consist of an amino-terminus, the canonical α-crystallin domain, and a carboxy-terminal extension. It remains difficult, however, to define sHSP structure-function relationships and with this in mind p26, an sHSP from the crustacean Artemia franciscana, was truncated by deletion mutagenesis. Wild-type p26 cDNA and three truncated variants inserted into the eukaryotic expression vector pcDNA3.1/HisC were used to generate stably transfected 293H cells. p26 shielded transfected cells against death upon exposure to heat and oxidative stress. Truncation reduced chaperone activity, with cells synthesizing the p26 α-crystallin domain being the least resistant. Wild-type p26 inhibited apoptosis in transfected cells, with protection against oxidation-generated apoptosis being more effective than that against heat-induced apoptosis. Truncation reduced p26 apoptotic inhibitory activity, with the α-crystallin domain again being the least effective. The results show that a crustacean sHSP functions effectively in mammalian cells, demonstrating interchangeability of these proteins between distantly related organisms and indicating similarities in their mechanisms of action. Moreover, maximal activity was observed for full-length p26, indicating that structural elements required for chaperone activity and apoptosis inhibition reside throughout the protein.
Collapse
Affiliation(s)
- Yong Wu
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
18
|
Prolongation and enhancement of the anti-apoptotic effects of PTD-Hsp27 fusion proteins using an injectable thermo-reversible gel in a rat myocardial infarction model. J Control Release 2010; 144:181-9. [DOI: 10.1016/j.jconrel.2010.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/07/2010] [Indexed: 12/31/2022]
|
19
|
Lim KS, Won YW, Park YS, Kim YH. Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins. Biochimie 2010; 92:964-70. [PMID: 20403412 DOI: 10.1016/j.biochi.2010.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/08/2010] [Indexed: 11/16/2022]
Abstract
In order for proteins to be used as pharmaceuticals, delivery technologies need to be developed to overcome biochemical and anatomical barriers to protein drug transport, to protect proteins from systemic degradation, and to target the drug action to specific sites. Protein transduction domains (PTDs) are used for the non-specific transduction of bio-active cargo, such as proteins, genes, and particles, through cellular membranes to overcome biological barriers. Metallothionein (MT) is a low molecular weight intra-cellular protein that consists of 61 amino acids, including 20 cysteine residues, and is over-expressed under stressful conditions. Although MT has the potential to improve the viability of islet cells and cardiomyocytes by inhibiting diabetic-induced apoptosis and by removing reactive oxygen species (ROS), and thereby prevent or reduce diabetes and diabetic complications, all MT applications have been made for gene therapy or under induced over-expression of endogenous MT. To overcome the drawbacks of ineffective intra-cellular MT protein uptake, a human MT gene was cloned and fused with protein transduction domains (PTDs), such as HIV-1 Tat and undeca-arginine, in a bacterial expression vector to produce PTD-MT fusion proteins. The expression and purification of three types of proteins were optimized by adding Zn ions to maintain their stability and functionality mimicking intra-cellular stable conformation of MT as a Zn-MT cluster. The Zn-MT cluster showed better stability than MT in vitro. PTD-MT fusion proteins strongly protected Ins-1 beta cells against oxidative stress and apoptosis induced by glucolipotoxicity with or without hypoxia, and also protected H9c2 cardiomyocytes against hyperglycemia-induced apoptosis with or without hypoxia. PTD-MT recombinant fusion proteins may be useful protein therapeutics for the treatment or prevention of diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Kwang Suk Lim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 2009; 137:196-202. [PMID: 19374930 DOI: 10.1016/j.jconrel.2009.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/13/2009] [Accepted: 04/08/2009] [Indexed: 12/27/2022]
Abstract
Myocardial infarction causes a high rate of morbidity and mortality worldwide, and heat shock proteins as molecular chaperones have been attractive targets for protecting cardiomyoblasts under environmental stimuli. In this study, in order to enhance the penetration of heat shock protein 27 (HSP27) across cell membranes, we fused HSP27 with transcriptional activator (TAT) derived from human immunodeficiency virus (HIV) as a protein transduction domain (PTD). We loaded the fusion protein (TAT-HSP27) into microsphere/hydrogel combination delivery systems to control the release behavior for prolonged time periods. We found that the release behavior of TAT-HSP27 was able to be controlled by varying the ratio of PLGA microspheres and alginate hydrogels. Indeed, the released fusion protein maintained its bioactivity and could recover the proliferation of cardiomyoblasts cultured under hypoxic conditions. This approach to controlling the release behavior of TAT-HSP27 using microsphere/hydrogel combination delivery systems may be useful for treating myocardial infarction in a minimally invasive manner.
Collapse
|