1
|
Yang Z, Yi P, Liu Z, Zhang W, Mei L, Feng C, Tu C, Li Z. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 10:865770. [PMID: 35656197 PMCID: PMC9152119 DOI: 10.3389/fbioe.2022.865770] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Tremendous advances in tissue engineering and regenerative medicine have revealed the potential of fabricating biomaterials to solve the dilemma of bone and articular defects by promoting osteochondral and cartilage regeneration. Three-dimensional (3D) bioprinting is an innovative fabrication technology to precisely distribute the cell-laden bioink for the construction of artificial tissues, demonstrating great prospect in bone and joint construction areas. With well controllable printability, biocompatibility, biodegradability, and mechanical properties, hydrogels have been emerging as an attractive 3D bioprinting material, which provides a favorable biomimetic microenvironment for cell adhesion, orientation, migration, proliferation, and differentiation. Stem cell-based therapy has been known as a promising approach in regenerative medicine; however, limitations arise from the uncontrollable proliferation, migration, and differentiation of the stem cells and fortunately could be improved after stem cells were encapsulated in the hydrogel. In this review, our focus was centered on the characterization and application of stem cell-laden hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. We not only highlighted the effect of various kinds of hydrogels, stem cells, inorganic particles, and growth factors on chondrogenesis and osteogenesis but also outlined the relationship between biophysical properties like biocompatibility, biodegradability, osteoinductivity, and the regeneration of bone and cartilage. This study was invented to discuss the challenge we have been encountering, the recent progress we have achieved, and the future perspective we have proposed for in this field.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Yi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
3
|
Teng B, Zhang S, Pan J, Zeng Z, Chen Y, Hei Y, Fu X, Li Q, Ma M, Sui Y, Wei S. A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater 2021; 122:145-159. [PMID: 33444801 DOI: 10.1016/j.actbio.2020.12.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Hydrogel scaffolds are widely used in cartilage tissue engineering as a natural stem cell niche. In particular, hydrogels based on multiple biological signals can guide behaviors of mesenchymal stem cells (MSCs) during neo-chondrogenesis. In the first phase of this study, we showed that functionalized hydrogels with grafted arginine-glycine-aspartate (RGD) peptides and lower degree of crosslinking can promote the proliferation of human mesenchymal stem cells (hMSCs) and upregulate the expression of cell receptor proteins. Moreover, grafted RGD and histidine-alanine-valine (HAV) peptides in hydrogel scaffolds can regulate the adhesion of the intercellular at an early stage. In the second phase, we confirmed that simultaneous use of HAV and RGD peptides led to greater chondrogenic differentiation compared to the blank control and single-peptide groups. Furthermore, the controlled release of kartogenin (KGN) can better facilitate cell chondrogenesis compared to other groups. Interestingly, with longer culture time, cell condensation was clearly observed in the groups with RGD and HAV peptide. In all groups with RGD peptide, significant matrix deposition was observed, accompanied by glycosaminoglycan (GAG) and collagen (Coll) production. Through in vitro and in vivo experiments, this study confirmed that our hydrogel system can sequentially promote the proliferation, adhesion, condensation, chondrogenic differentiation of hMSCs, by mimicking the cell microenvironment during neo-chondrogenesis.
Collapse
Affiliation(s)
- Binhong Teng
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Ziqian Zeng
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Yu Hei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Xiaoming Fu
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Ming Ma
- Department of Oral Pathology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yi Sui
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, PR China; Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China.
| |
Collapse
|
4
|
Piovani L, Czarkwiani A, Ferrario C, Sugni M, Oliveri P. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. BMC Biol 2021; 19:9. [PMID: 33461552 PMCID: PMC7814545 DOI: 10.1186/s12915-020-00937-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.
Collapse
Affiliation(s)
- Laura Piovani
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Center for Life Origins and Evolution, University College London, London, UK
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Present Address: DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Dresden, Germany
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy.
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK.
- Center for Life Origins and Evolution, University College London, London, UK.
| |
Collapse
|
5
|
Andreasson L, Evenbratt H, Simonsson S. GDF5 induces TBX3 in a concentration dependent manner - on a gold nanoparticle gradient. Heliyon 2020; 6:e04133. [PMID: 32551383 PMCID: PMC7292926 DOI: 10.1016/j.heliyon.2020.e04133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
Organs and tissues, such as cartilage and limbs, are formed during development through an orchestration of growth factors that function as morphogens. Examples of growth factors include growth differentiation factor 5 (GDF5) and transforming growth factors beta 1 and 3 (TGFβ-1 and TGFβ-3) which can specify creation of more than one cell type after forming a concentration gradient in vivo. Here, we studied the impact of morphogen gradients during differentiation of induced pluripotent stem cells (iPSCs) into the chondrocyte lineage. Cell budding zones, consisting of condensed cell aggregates, were observed only in gradients of GDF5. T-box transcription factor 3 (TBX3) was detected specifically in the budding zones (ranging from 500-1,500 particles/μm2) of nuclei and cell vesicles. A homogenous density of GDF5 of 900 particles/μm2 on a surface induced budding and expression of TBX3 after five days in iPSCs. Therefore, we conclude that a gradient of GDF5, as well as the specific homogenous density of GDF5, support the induction of TBX3 in iPCSs. Moreover, differentiation of iPSCs first on GDF5 gradient or homogenous surfaces for five days and then in a three-dimensional structure for five weeks resulted in pellets that expressed TBX3.
Collapse
Affiliation(s)
- L. Andreasson
- Cline Scientific AB, Mölndal, SE-431 53, Sweden
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | | | - S. Simonsson
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| |
Collapse
|
6
|
Bazzoun D, Adissu HA, Wang L, Urazaev A, Tenvooren I, Fostok SF, Chittiboyina S, Sturgis J, Hodges K, Chandramouly G, Vidi PA, Talhouk RS, Lelièvre SA. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium. J Cell Sci 2019; 132:jcs.223313. [PMID: 30992345 DOI: 10.1242/jcs.223313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication is essential for tissue homeostasis, but its contribution to disease prevention remains to be understood. We demonstrate the involvement of connexin 43 (Cx43, also known as GJA1) and related gap junction in epithelial homeostasis, illustrated by polarity-mediated cell cycle entry and mitotic spindle orientation (MSO). Cx43 localization is restricted to the apicolateral membrane of phenotypically normal breast luminal epithelial cells in 3D culture and in vivo Chemically induced blockade of gap junction intercellular communication (GJIC), as well as the absence of Cx43, disrupt the apicolateral distribution of polarity determinant tight junction marker ZO-1 (also known as TJP1) and lead to random MSO and cell multilayering. Induced expression of Cx43 in cells that normally lack this protein reestablishes polarity and proper MSO in 3D culture. Cx43-directed MSO implicates PI3K-aPKC signaling, and Cx43 co-precipitates with signaling node proteins β-catenin (CTNNB1) and ZO-2 (also known as TJP2) in the polarized epithelium. The distribution of Cx43 is altered by pro-inflammatory breast cancer risk factors such as leptin and high-fat diet, as shown in cell culture and on tissue biopsy sections. The control of polarity-mediated quiescence and MSO may contribute to the tumor-suppressive role of Cx43.
Collapse
Affiliation(s)
- D Bazzoun
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - H A Adissu
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - L Wang
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - I Tenvooren
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - S F Fostok
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S Chittiboyina
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Sturgis
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Hodges
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - G Chandramouly
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P-A Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - R S Talhouk
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S A Lelièvre
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Kwon MY, Vega SL, Gramlich WM, Kim M, Mauck RL, Burdick JA. Dose and Timing of N-Cadherin Mimetic Peptides Regulate MSC Chondrogenesis within Hydrogels. Adv Healthc Mater 2018; 7:e1701199. [PMID: 29359863 DOI: 10.1002/adhm.201701199] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/04/2017] [Indexed: 12/23/2022]
Abstract
The transmembrane glycoprotein N-cadherin (NCad) mediates cell-cell interactions found during mesenchymal condensation and chondrogenesis. Here, NCad-derived peptides (i.e., HAV) are incorporated into hyaluronic acid (HA) hydrogels with encapsulated mesenchymal stem cells (MSCs). Since the dose and timing of NCad signaling are dynamic, HAV peptide presentation is tuned via alterations in peptide concentration and incorporation of an ADAM10-cleavable domain between the hydrogel and the HAV motif, respectively. HA hydrogels functionalized with HAV result in dose-dependent increases in early chondrogenesis of encapsulated MSCs and resultant cartilage matrix production. For example, type II collagen and glycosaminoglycan production increase ≈9- and 2-fold with the highest dose of HAV (i.e., 2 × 10-3 m), respectively, when compared to unmodified hydrogels, while incorporation of an efficient ADAM10-cleavable domain between the HAV peptide and hydrogel abolishes increases in chondrogenesis and matrix production. Treatment with a small-molecule ADAM10 inhibitor restores the functional effect of the HAV peptide, indicating that timing and duration of HAV peptide presentation is crucial for robust chondrogenesis. This study demonstrates a nuanced approach to the biofunctionalization of hydrogels to better emulate the complex cell microenvironment during embryogenesis toward stem-cell-based cartilage production.
Collapse
Affiliation(s)
- Mi Y. Kwon
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| | - Sebastián L. Vega
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| | | | - Minwook Kim
- Department of Orthopedic Surgery University of Pennsylvania Perelman School of Medicine Philadelphia PA 19104 USA
| | - Robert L. Mauck
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
- Department of Orthopedic Surgery University of Pennsylvania Perelman School of Medicine Philadelphia PA 19104 USA
| | - Jason A. Burdick
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| |
Collapse
|
8
|
Somoza RA, Correa D, Labat I, Sternberg H, Forrest ME, Khalil AM, West MD, Tesar P, Caplan AI. Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Eng Part A 2017; 24:335-350. [PMID: 28602122 DOI: 10.1089/ten.tea.2016.0559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular differentiation comprises a progressive, multistep program that drives cells to fabricate a tissue with specific and site distinctive structural and functional properties. Cartilage constitutes one of the potential differentiation lineages that mesenchymal stem cells (MSCs) can follow under the guidance of specific bioactive agents. Single agents such as transforming growth factor beta (TGF-β) and bone morphogenetic protein 2 in unchanging culture conditions have been historically used to induce in vitro chondrogenic differentiation of MSCs. Despite the expression of traditional chondrogenic biomarkers such as type II collagen and aggrecan, the resulting tissue represents a transient cartilage rather than an in vivo articular cartilage (AC), differing significantly in structure, chemical composition, cellular phenotypes, and mechanical properties. Moreover, there have been no comprehensive, multicomponent parameters to define high-quality and functional engineered hyaline AC. To address these issues, we have taken an innovative approach based on the molecular interrogation of human neonatal articular cartilage (hNAC), dissected from the knees of 1-month-old cadaveric specimens. Subsequently, we compared hNAC-specific transcriptional regulatory elements and differentially expressed genes with adult human bone marrow (hBM) MSC-derived three-dimensional cartilage structures formed in vitro. Using microarray analysis, the transcriptome of hNAC was found to be globally distinct from the transient, cartilage-like tissue formed by hBM-MSCs in vitro. Specifically, over 500 genes that are highly expressed in hNAC were not expressed at any time point during in vitro human MSC chondrogenesis. The analysis also showed that the differences were less variant during the initial stages (first 7 days) of the in vitro chondrogenic differentiation program. These observations suggest that the endochondral fate of hBM-MSC-derived cartilage may be rerouted at earlier stages of the TGF-β-stimulated chondrogenic differentiation program. Based on these analyses, several key molecular differences (transcription factors and coded cartilage-related proteins) were identified in hNAC that will be useful as molecular inductors and identifiers of the in vivo AC phenotype. Our findings provide a new gold standard of a molecularly defined AC phenotype that will serve as a platform to generate novel approaches for AC tissue engineering.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio
| | - Diego Correa
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,3 Division of Sports Medicine, Department of Orthopaedics, Diabetes Research Institute and Cell Transplant Center, University of Miami , Miller School of Medicine, Miami, Florida
| | | | | | - Megan E Forrest
- 5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Ahmad M Khalil
- 2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio.,5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | | | - Paul Tesar
- 5 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio.,2 CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, Ohio
| |
Collapse
|
9
|
Ku BM, Yune YP, Lee ES, Hah YS, Park JY, Jeong JY, Lee DH, Cho GJ, Choi WS, Kang SS. PKCη Regulates the TGFβ3-induced Chondevrepogenic Differentiation of Human Mesenchymal Stem Cell. Dev Reprod 2015; 17:299-309. [PMID: 25949145 PMCID: PMC4382954 DOI: 10.12717/dr.2013.17.4.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022]
Abstract
Transforming growth factor (TGF) family is well known to induce the chondevrepogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondevrepogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta (PKCη) was selected as a possible chondevrepogenic differentiation factor for hMSC. To confirm this possibility, we treated TGFβ3, a well known chondevrepogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as PKCη using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of PKCη, we examined morphological changes, expressions of GAG and COL II after transfection of PKCη -C2 domain in hMSC. Overexpression of PKCη-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that PKCη involves in the TGF-β3-induced chondevrepogenic differentiation of hMSC, and C2 domain of PKCη has important role in this process.
Collapse
Affiliation(s)
- Bo Mi Ku
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Young Phil Yune
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Eun Shin Lee
- Department of Rehabilitation Medicine, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Young-Sool Hah
- Clinical Research Institute, Gyeongsang National University Hospital, Jinju 660-702, Republic of Korea
| | - Jae Yong Park
- Dept. of Physiology, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Joo Yeon Jeong
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy & Neurobiology, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-290, Republic of Korea
| |
Collapse
|
10
|
Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:569241. [PMID: 24812622 PMCID: PMC4000943 DOI: 10.1155/2014/569241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022]
Abstract
Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Results. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. Conclusion. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.
Collapse
|
11
|
Nakazora S, Matsumine A, Iino T, Hasegawa M, Kinoshita A, Uemura K, Niimi R, Uchida A, Sudo A. The cleavage of N-cadherin is essential for chondrocyte differentiation. Biochem Biophys Res Commun 2010; 400:493-9. [PMID: 20735983 DOI: 10.1016/j.bbrc.2010.08.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/29/2022]
Abstract
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.
Collapse
Affiliation(s)
- Shigeto Nakazora
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu-city, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|