1
|
Angelopoulos I, Trigo C, Ortuzar MI, Cuenca J, Brizuela C, Khoury M. Delivery of affordable and scalable encapsulated allogenic/autologous mesenchymal stem cells in coagulated platelet poor plasma for dental pulp regeneration. Sci Rep 2022; 12:435. [PMID: 35013332 PMCID: PMC8748942 DOI: 10.1038/s41598-021-02118-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
The main goal of regenerative endodontics procedures (REPs) is to revitalize teeth by the regeneration of healthy dental pulp. In this study, we evaluated the potential of combining a natural and accessible biomaterial based on Platelet Poor Plasma (PPP) as a support for dental pulp stem cells (DPSC) and umbilical cord mesenchymal stem cells (UC-MSC). A comparison study between the two cell sources revealed compatibility with the PPP based scaffold with differences noted in the proliferation and angiogenic properties in vitro. Additionally, the release of growth factors including VEGF, HGF and DMP-1, was detected in the media of cultured PPP and was enhanced by the presence of the encapsulated MSCs. Dentin-Discs from human molars were filled with PPP alone or with MSCs and implanted subcutaneously for 4 weeks in mice. Histological analysis of the MSC-PPP implants revealed a newly formed dentin-like structure evidenced by the expression of Dentin sialophosphoprotein (DSPP). Finally, DPSC induced more vessel formation around the dental discs. This study provides evidence of a cost-effective, xenofree scaffold that is compatible with either autologous or allogenic strategy for dental pulp regeneration. This attempt if successfully implemented, could make REPs treatment widely accessible, contributing in improving global health conditions.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cesar Trigo
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maria-Ignacia Ortuzar
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Claudia Brizuela
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
2
|
Yin J, Xu J, Cheng R, Shao M, Qin Y, Yang H, Hu T. Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair. Int J Oral Sci 2021; 13:1. [PMID: 33414369 PMCID: PMC7791050 DOI: 10.1038/s41368-020-00105-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Dental pulp can initiate its damage repair after an injury of the pulp–dentin complex by rearrangement of odontoblasts and formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were arranged along the pulp–dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuandong Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Liu YP, Wang J, Tian ZL, Zhai PS, Wang ZQ, Zhou YM, Ni SL. [Effects of scaffold microstructure and mechanical properties on regeneration of tubular dentin]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:314-318. [PMID: 32573141 DOI: 10.7518/hxkq.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular dentin is of great significance in the process of tooth tissue and tooth regeneration, because it is not only the structural feature of primary dentin, but also can affect the tooth sensory function, affect the differentiation of dental pulp cells and provide strong mechanical support for teeth. Scaffold is one of the three elements of tissue engineering dentin regeneration. Most experiments on dentin regeneration involve the study of the microstructure and mechanical properties of the scaffold. The microstructure and mechanical characteristics of scaffold materials have important effects on the differentiation and adhesion of odontoblast, it can directly affect the tissue structure of regenerated dentin.
Collapse
Affiliation(s)
- Yi-Ping Liu
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Jue Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zi-Lu Tian
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Pei-Song Zhai
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zhan-Qi Wang
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Yan-Min Zhou
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Shi-Lei Ni
- Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130000, China
| |
Collapse
|
4
|
Martín-de-Llano JJ, Mata M, Peydró S, Peydró A, Carda C. Dentin tubule orientation determines odontoblastic differentiation in vitro: A morphological study. PLoS One 2019; 14:e0215780. [PMID: 31071116 PMCID: PMC6508697 DOI: 10.1371/journal.pone.0215780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Odontoblasts are post-mitotic cells responsible for maintenance of the dentin, and are therefore important for dental health. In some cases, irreversible pulpitis leads to necrosis and consequently death of odontoblasts. Regenerative endodontics (RE) uses the concept of tissue engineering to restore the root canals to a healthy state, allowing for continued development of the root and surrounding tissue. Human dental pulp stem cells (hDPSCs) have been successfully used in RE to restore odontoblast function. Surface microgeometry is one of the most important factors involved in the induction of differentiation of hDPSCs into odontoblast-like cells. Although different authors have demonstrated the importance of a dentin-like surface with accessible dentin tubules to induce differentiation of hDPSCs, the ultrastructural characteristics of the cells and the secreted extracellular matrix have not been studied in depth. Here, we used an acellular dentin scaffold containing dentin tubules in different spatial geometries, which regulated their accessibility to cells. hDPSCs were cultured on the scaffolds for up to 6 weeks. Systematic characterization of differentiated cells was performed using both optical (hematoxylin and eosin, Masson trichrome, and immunohistochemical determination of dentin sialoprotein [DSSP]) and transmission electron microscopy. The results presented here indicated that cells grown on the dentin surface containing accessible dentin tubules developed a characteristic odontoblastic phenotype, with cellular processes similar to native odontoblasts. The cell organization and characteristics of secreted extracellular matrix were also similar to those of native dentin tissue. Cells grown on non-accessible dentin tubule surfaces secreted a more abundant and dense extracellular matrix, and developed a different phenotype consisting of secretory flat cells organized in layers. Cells grown far from the scaffold, i.e., directly on the culture well surface, developed a secretory phenotype probably influenced by biochemical factors released by the dentin scaffold or differentiated cells. The results presented here support the use of hDPSCs to regenerate dentin and show the utility of scaffold microgeometry for determining the differentiation and secretory phenotype of cultured cells.
Collapse
Affiliation(s)
- José Javier Martín-de-Llano
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Manuel Mata
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| | - Santiago Peydró
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Amando Peydró
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Carmen Carda
- Department of Pathology. Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| |
Collapse
|
5
|
Neunzehn J, Pötschke S, Hannig C, Wiesmann HP, Weber MT. Odontoblast-like differentiation and mineral formation of pulpsphere derived cells on human root canal dentin in vitro. Head Face Med 2017; 13:23. [PMID: 29221472 PMCID: PMC5723081 DOI: 10.1186/s13005-017-0156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The revitalization or regeneration of the dental pulp is a preferable goal in current endodontic research. In this study, human dental pulp cell (DPC) spheres were applied to human root canal samples to evaluate their potential adoption for physiological tissue-like regeneration of the dental root canal by odontoblastic differentiation as well as cell-induced mineral formation. METHODS DPC were cultivated into three-dimensional cell spheres and seeded on human root canal specimens. The evaluation of sphere formation, tissue-like behavior and differentiation as well as mineral formation of the cells was carried out with the aid of optical light microscopy, immunohistochemical staining and scanning electron microscopy (SEM). RESULTS Spheres and cells migrated out of the spheres showed an intense cell-cell- and cell-dentin-contact with the formation of extra cellular matrix. In addition, the ingrowth of cell processes into dentinal tubules and the interaction of cell processes with the tubule walls were detected by SEM-imaging. Immunohistochemical staining of the odontoblast specific matrix proteins, dentin matrix protein-1, and dentin sialoprotein revealed an odontoblast-like cell differentiation in contact with the dentin surface. This differentiation was confirmed by SEM-imaging of cells with an odontoblast specific phenotype and cell induced mineral formation. CONCLUSIONS The results of the present study reveal the high potential of pulp cells organized in spheres for dental tissue engineering. The odontoblast-like differentiation and the cell induced mineral formation display the possibility of a complete or partial "dentinal filling" of the root canal and the opportunity to combine this method with other current strategies.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany.
| | - Sandra Pötschke
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Christian Hannig
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Hans-Peter Wiesmann
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069, Dresden, Germany
| | - Marie-Theres Weber
- Clinic for Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| |
Collapse
|
6
|
Tran HLB, Doan VN. Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell Tissue Bank 2015; 16:559-68. [PMID: 25700693 DOI: 10.1007/s10561-015-9503-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Regeneration of dentin tissues in the pulp space of teeth serves the ultimate goal of preserving teeth via endodontic approaches. In recent times, many studies suggested that human dentin scaffolds combined with dental stem cells was a potential strategy for the complete dentin tissue regeneration. In this study, human dental pulp stem cells (DPSCs) were isolated and cultured. Dentin specimens were prepared from human third molars and treated with ethylene diamine tetra-acetic acid and citric acid to remove the smear layer. Then, DPSCs were cultured onto human treated dentin (hTD) and implanted in mouse model for 4, 6 and 8 weeks. The resulting grafts were assessed by hematoxylin and eosin stain and immunohistochemical stains. As a result, DPSCs were supported and induced to regenerate of dentin-like tissues which expressed specific dentin markers such as dentin sialophosphoprotein and dentin matrix protein 1 by combination with hTD in vivo. Furthermore, cells existed in the newly-formed dentin-like tissues also expressed typical human mitochondria antibodies, demonstrated that new tissues originated from human. In conclusion, the obtain results extend hopefully newly-established therapy to apply in endodontics and traumatic dental hard tissues.
Collapse
Affiliation(s)
- Ha Le Bao Tran
- Department of Physiology and Animal Biotechnology, Faculty of Biology, University of Science, Vietnam National University at Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, Vietnam.
| | - Vu Nguyen Doan
- Department of Physiology and Animal Biotechnology, Faculty of Biology, University of Science, Vietnam National University at Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Neunzehn J, Weber MT, Wittenburg G, Lauer G, Hannig C, Wiesmann HP. Dentin-like tissue formation and biomineralization by multicellular human pulp cell spheres in vitro. Head Face Med 2014; 10:25. [PMID: 24946771 PMCID: PMC4074584 DOI: 10.1186/1746-160x-10-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/12/2014] [Indexed: 01/06/2023] Open
Abstract
Introduction Maintaining or regenerating a vital pulp is a preferable goal in current endodontic research. In this study, human dental pulp cell aggregates (spheres) were applied onto bovine and human root canal models to evaluate their potential use as pre-differentiated tissue units for dental pulp tissue regeneration. Methods Human dental pulp cells (DPC) were derived from wisdom teeth, cultivated into three-dimensional cell spheres and seeded onto bovine and into human root canals. Sphere formation, tissue-like and mineralization properties as well as growth behavior of cells on dentin structure were evaluated by light microscopy (LM), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Results Spheres and outgrown cells showed tissue-like properties, the ability to merge with other cell spheres and extra cellular matrix formation; CLSM investigation revealed a dense network of actin and focal adhesion contacts (FAC) inside the spheres and a pronounced actin structure of cells outgrown from the spheres. A dentin-structure-orientated migration of the cells was shown by SEM investigation. Besides the direct extension of the cells into dentinal tubules, the coverage of the tubular walls with cell matrix was detected. Moreover, an emulation of dentin-like structures with tubuli-like and biomineral formation was detected by SEM- and EDX-investigation. Conclusions The results of the present study show tissue-like behavior, the replication of tubular structures and the mineralization of human dental pulp spheres when colonized on root dentin. The application of cells in form of pulp spheres on root dentin reveals their beneficial potential for dental tissue regeneration.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, Budapester Strasse 27, D-01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|