1
|
Iswanto ABB, Vu MH, Shon JC, Kumar R, Wu S, Kang H, Kim DR, Son GH, Kim WY, Kwak YS, Liu KH, Kim SH, Kim JY. α1-COP modulates plasmodesmata function through sphingolipid enzyme regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1639-1657. [PMID: 38888228 DOI: 10.1111/jipb.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong Cheol Shon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Shuwei Wu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Da-Ran Kim
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Woe Yoen Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Youn-Sig Kwak
- Departement of Plant Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
2
|
Shi Y, Liu Y, Wu C, Liu X, Hu W, Yang Z, Li Z, Li Y, Deng C, Wei K, Gu C, Chen X, Su W, Zhuo Y. N,N-Dimethyl-3β-hydroxycholenamide attenuates neuronal death and retinal inflammation in retinal ischemia/reperfusion injury by inhibiting Ninjurin 1. J Neuroinflammation 2023; 20:91. [PMID: 37029422 PMCID: PMC10082498 DOI: 10.1186/s12974-023-02754-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Retinal ischemia-reperfusion (RIR) injury refers to an obstruction in the retinal blood supply followed by reperfusion. Although the molecular mechanism underlying the ischemic pathological cascade is not fully understood, neuroinflammation plays a crucial part in the mortality of retinal ganglion cells. METHODS Single-cell RNA sequencing (scRNA-seq), molecular docking, and transfection assay were used to explore the effectiveness and pathogenesis of N,N-dimethyl-3β-hydroxycholenamide (DMHCA)-treated mice with RIR injury and DMHCA-treated microglia after oxygen and glucose deprivation/reoxygenation (OGD/R). RESULTS DMHCA could suppress inflammatory gene expression and attenuate neuronal lesions, restoring the retinal structure in vivo. Using scRNA-seq on the retina of DMHCA-treated mice, we provided novel insights into RIR immunity and demonstrated nerve injury-induced protein 1 (Ninjurin1/Ninj 1) as a promising treatment target for RIR. Moreover, the expression of Ninj1, which was increased in RIR injury and OGD/R-treated microglia, was downregulated in the DMHCA-treated group. DMHCA suppressed the activation of the nuclear factor kappa B (NF-κB) pathways induced by OGD/R, which was undermined by the NF-κB pathway agonist betulinic acid. Overexpressed Ninj1 reversed the anti-inflammatory and anti-apoptotic function of DMHCA. Molecular docking indicated that for Ninj1, DMHCA had a low binding energy of - 6.6 kcal/mol, suggesting highly stable binding. CONCLUSION Ninj1 may play a pivotal role in microglia-mediated inflammation, while DMHCA could be a potential treatment strategy against RIR injury.
Collapse
Affiliation(s)
- Yunhong Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Wenfei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Kun Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
3
|
Miyashita M, Koga K, Takeuchi A, Makabe T, Taguchi A, Urata Y, Izumi G, Takamura M, Harada M, Hirata T, Hirota Y, Wada-Hiraike O, Yoshino O, Fujii T, Osuga Y. Expression of Nerve Injury-Induced Protein1 (Ninj1) in Endometriosis. Reprod Sci 2018; 26:1105-1110. [PMID: 30326781 DOI: 10.1177/1933719118806395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to clarify the expression of Ninj1 in endometriosis and adenomyosis lesions, and its inductive factor in human endometriotic stromal cells (ESCs). BACKGROUND Nerve injury-induced protein 1 (Ninj1) is a molecule originally identified in dorsal root ganglion neurons and Schwann cells after nerve injury and promotes neurite outgrowth. The aim of this study was to clarify the expression of Ninj1 in endometriosis and adenomyosis lesions, and its inductive factor in human endometriotic stromal cells (ESCs). MATERIALS AND METHODS Tissues were obtained with consent from patients diagnosed with ovarian endometrioma (n = 15 in total), peritoneal endometriosis (n = 5), adenomyosis (n = 5), and other gynecological disorders (n = 5, control) during surgery. Immunohistochemistry was conducted in order to detect Ninj1 protein expression in the lesion of endometriosis, adenomyosis, and eutopic endometrium. Nerve fibers in the ovarian endometrioma were detected by positive staining of PGP-9.5. To evaluate the effects of IL-1β on Ninj1 gene expression in endometriosis, ESCs isolated from ovarian endometrioma (n = 5) were treated with IL-1β (5 ng/mL) for 3 or 6 hours. Messenger RNA (mRNA) expression for Ninj1 was examined using quantitative RT-PCR. RESULTS The Ninj1 protein was expressed by ovarian endometrioma, peritoneal endometriotic, and adenomyotic tissue. Nerve fibers were found in the areas of positive staining for Ninj1 in ovarian endometrioma. IL-1β, an indicator of inflammation in endometriosis, significantly increased Ninj1 mRNA expression by ESC. CONCLUSION Our study demonstrates that Ninj1 is expressed in endometriosis and adenomyosis and is induced by the inflammatory stimuli. Given the neurogenetic property of Ninj1, our results imply that Ninj1, induced by inflammation in endometriosis lesion, may contribute to the pathogenesis of pain symptoms characteristic of endometriosis.
Collapse
Affiliation(s)
- Mariko Miyashita
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Arisa Takeuchi
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Tomoko Makabe
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Gentaro Izumi
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Masashi Takamura
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Osamu Yoshino
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- 1 Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kang EH, Song EJ, Kook JH, Lee HH, Jeong BR, Park HM. Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production in Aspergillus nidulans. MYCOBIOLOGY 2015; 43:31-36. [PMID: 25892912 PMCID: PMC4397377 DOI: 10.5941/myco.2015.43.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We have previously isolated ε-COP, the α-COP interactor in COPI of Aspergillus nidulans, by yeast two-hybrid screening. To understand the function of ε-COP, the aneA (+) gene for ε-COP/AneA was deleted by homologous recombination using a gene-specific disruption cassette. Deletion of the ε-COP gene showed no detectable changes in vegetative growth or asexual development, but resulted in decrease in the production of the fruiting body, cleistothecium, under conditions favorable for sexual development. Unlike in the budding yeast Saccharomyces cerevisiae, in A. nidulans, over-expression of ε-COP did not rescue the thermo-sensitive growth defect of the α-COP mutant at 42℃. Together, these data show that ε-COP is not essential for viability, but it plays a role in fruiting body formation in A. nidulans.
Collapse
Affiliation(s)
- Eun-Hye Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Jung Song
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Jun Ho Kook
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hwan-Hee Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Bo-Ri Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
5
|
Kim KH, Kim EK, Jeong KY, Park YH, Park HM. Effects of mutations in the WD40 domain of α-COP on its interaction with the COPI coatomer in Saccharomyces cerevisiae. J Microbiol 2012; 50:256-62. [PMID: 22538654 DOI: 10.1007/s12275-012-1326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/14/2011] [Indexed: 10/28/2022]
Abstract
Replacement of glycine 227 in the fifth WD40 motif of α-COP/Ret1p/Soo1p by charged or aromatic amino acids is responsible for the temperature-dependent osmo-sensitivity of Saccharomyces cerevisiae, while truncations of WD40 motifs exerted a reduction in cell growth rate and impairment in assembly of cell-wall associated proteins such as enolase and Gas1p. Yeast two-hybrid analysis revealed that the ret1-1/soo1-1 mutation of α-COP abolished the interaction with β- and ɛ-COP, respectively, and that the interaction between α-COP and β-COP relied on the WD40 domain of α-COP. Furthermore, although the WD40 domain is dispensable for interaction of α-COP with ɛ-COP, structural alterations in the WD40 domain could impair the interaction.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|