1
|
Liu W, Dong Y, Guo R, Zhou D, Qin Y, Ma Y, Zhang J, Li A. MARVELD1 inhibits Neuro2a cell migration and tumorigenesis via regulating the transcriptional coactivators and protein methylation. Bull Cancer 2025; 112:458-468. [PMID: 40087069 DOI: 10.1016/j.bulcan.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 03/16/2025]
Abstract
Neuronal cell proliferation and migration play an important regulatory role in the development and tumorigenesis of the nervous system. MARVEL domain-containing protein 1 (MARVELD1) is a potential tumor suppressor gene whose function in nervous system diseases is unclear. This study aimed to analyze the function and molecular mechanism of MARVELD1 gene in Neuro2a cell migration and tumor growth. We found that MARVELD1 could inhibit the tumor development with low-expression of Ki67, high-expression of cleaved-caspase3 and strong signal TUNEL staining. Moreover, MARVELD1 suppressed migration and epithelial to mesenchymal transition process in Neuro2a cells. Mass spectrometry analysis indicated that MARVELD1 could bind to PPP1CB, PPP1CC and NRAS. The RNA-sequencing analysis showed that MARVELD1 regulated transcriptional coactivators and protein methylation. These genes ultimately affected the pathways related to cell migration. These data highlight the potential usefulness of MARVELD1 as a potential target for preventing nervous system tumor genesis and metastasis.
Collapse
Affiliation(s)
- Weizhe Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Development and Industrialization, Shijiazhuang, 050091 Hebei Province, China
| | - Yucui Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China
| | - Ruiying Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China
| | - Dingyan Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China
| | - Yiping Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China
| | - Yuetao Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China
| | - Juanjuan Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, 050091 Hebei Province, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei Province, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, 050091 Hebei Province, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Development and Industrialization, Shijiazhuang, 050091 Hebei Province, China.
| |
Collapse
|
2
|
Liu J, Xu L, Ding X, Ma Y. Genome-Wide Association Analysis of Reproductive Traits in Chinese Holstein Cattle. Genes (Basel) 2023; 15:12. [PMID: 38275594 PMCID: PMC10815438 DOI: 10.3390/genes15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore potential SNP loci for reproductive traits in Chinese Holstein cattle and identify candidate genes. Genome-wide Association Study based on mixed linear model was performed on 643 Holstein cattle using GeneSeek Bovine 50 K SNP chip. Our results detected forty significant SNP loci after Bonferroni correction. We identified five genes (VWC2L, STAT1, PPP3CA, LDB3, and CTNNA3) as being associated with pregnancy ratio of young cows, five genes (PAEP, ACOXL, EPAS1, GLRB, and MARVELD1) as being associated with pregnancy ratio of adult cows, and nine genes (PDE1B, SLCO1A2, ARHGAP26, ADAM10, APBB1, MON1B, COQ9, CDC42BPB, MARVELD1, and HPSE2) as being associated with daughter pregnancy rate. Our study may provide valuable insights into identifying genes related to reproductive traits and help promote the application of molecular breeding in dairy cows.
Collapse
Affiliation(s)
- Jiashuang Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
| |
Collapse
|
3
|
Genome-wide DNA methylation and gene expression patterns of androgenetic haploid tiger pufferfish (Takifugu rubripes) provide insights into haploid syndrome. Sci Rep 2022; 12:8252. [PMID: 35585152 PMCID: PMC9117679 DOI: 10.1038/s41598-022-10291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Androgenesis is an important chromosome set manipulation technique used in sex control in aquaculture. Haploid embryos exhibit haploid syndrome with body abnormalities and even die during early embryonic development. In this study, we used whole genome bisulfite sequencing (WGBS) to investigate the genome-wide DNA methylation profiles in haploid females (1n-X) and males (1n-Y), and diploid females (2n-XX) and males (2n-XY) of tiger pufferfish (Takifugu rubripes), an economically important fish in China. A total of 96.32 Gb clean data was produced. Differentially methylated regions (DMRs) were found between haploids and diploids, which may be related to abnormal development and early embryonic death in haploids. There were 3,641 hyper-methylated differentially methylated genes (DMGs) and 2,179 hypo-methylated DMGs in haploid vs. diploid comparisons in both females and males. These DMGs were mainly related to genomic stability maintenance and cell cycle regulation. slf1, actr8, gas2, and pbrm1 genes were selected to validate the methylation sequencing. After combining the methylation data with the corresponding transcriptome data, we identified several genes, including guca2a, myoc, fezf2, rprml, telo2, s100a1, and marveld1, which exhibited differential expression levels modulated by DNA methylation. In conclusion, our study revealed different methylation and expression profiles between haploid and diploid T. rubripes for the first time. Several DMGs were identified between different ploidy levels, which may be related to haploid syndrome formation. The results expand the understanding of the effects of ploidy on the early development of teleosts and provide knowledge about target genes and networks to improve the survival rate of haploids.
Collapse
|
4
|
Zhang J, Li Q, Sun Q, Wang B, Cui Y, Lou C, Yao Y, Zhang Y. Epigenetic modifications inhibit the expression of MARVELD1 and in turn tumorigenesis by regulating the Wnt/β-catenin pathway in pan-cancer. J Cancer 2022; 13:225-242. [PMID: 34976185 PMCID: PMC8692698 DOI: 10.7150/jca.63608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
MARVEL domain-containing 1 (MARVELD1) is one of the MARVEL domain-containing proteins. Expression of MARVELD1 in tumor and non-tumor tissues, the relationship between its expression and cancer prognosis, and upstream regulation of MARVELD1 were examined using pan-cancer data from The Cancer Genome Atlas. MARVELD1 expression was significantly downregulated in tissues used for pan-cancer analysis compared to that in normal tissues. Low expression of MARVELD1 was associated with poor disease outcomes in pan-cancer. Colon cancer patients with low expression of MARVELD1 had worse progression free survival and overall survival than those with high expression levels in our cohort. Hypermethylation and histone modification in the MARVELD1 promoter locus synergistically affected its expression in pan-cancer. The function of MARVELD1 in colon cancer remains to be studied. Gene Ontology enrichment analysis revealed that MARVELD1 may modulate processes associated with inhibition of tumorigenesis in colon cancer. Both upstream transcription factors and downstream functional enrichment of MARVELD1 were related to the Wnt/β-catenin signaling pathway. Overexpression of MARVELD1 inhibited the expression of β-catenin and its entry into the nucleus. MARVELD1 also inhibited the proliferation, migration, and invasion of colon cancer cells. With Wnt/β-catenin activator LiCl treatment, rescue experiments demonstrated that the role of MARVELD1 in colon cancer progression was dependent on the Wnt/β-catenin pathway. These results indicate that MARVELD1 acts as a tumor suppressor and inhibits tumorigenesis via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jingchun Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qinliang Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Ying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Chen Y, Zhang H, Han F, Yue L, Qiao C, Zhang Y, Dou P, Liu W, Li Y. The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion. J Cell Physiol 2017; 233:2257-2269. [PMID: 28708243 DOI: 10.1002/jcp.26098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
The placenta is a remarkable organ, it serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (p < 0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migrate and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4 during placenta development.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chunxiao Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Dou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
7
|
Yao Y, Shi M, Liu S, Li Y, Guo K, Ci Y, Liu W, Li Y. MARVELD1 modulates cell surface morphology and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Mol Carcinog 2015; 55:1714-1727. [PMID: 26509557 DOI: 10.1002/mc.22421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022]
Abstract
Integrins have been known to play pivotal roles in malignant progression and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC). We previously demonstrated that MARVELD1, a potential tumor suppressor, is epigenetically silenced in multiple cancer cells. In this study, we found MARVELD1 silencing altered cell surface ultrastructure of NSCLC cells and inhibited the formation of punctate integrin β1/β4 cluster in microvillus, whereas MARVELD1 overexpression suppressed TGF-β1-induced EMT. Remarkably, the balance of integrin β1 and β4 was modulated by MARVELD1. MARVELD1 silencing led to imbalance of integrin β1/β4 and significantly reduced microvillus length, furthermore affected the localization of β1/β4 at microvilli tips. TGF-β1-induced EMT was promoted by MARVELD1 silencing, while rebalance of integrin β1/β4 partly rescued the epithelial phenotype of MARVELD1-silenced cells. Mechanistically, we demonstrate that MARVELD1-mediated balance of integrin β1 and β4 regulates cell surface ultrastructure and EMT phenotype of NSCLC cells, suggesting MARVELD1 has a potential to be developed as a therapeutic target for NSCLC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shanshan Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kexin Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Xu S, Wu H, Nie H, Yue L, Jiang H, Xiao S, Li Y. AIF downregulation and its interaction with STK3 in renal cell carcinoma. PLoS One 2014; 9:e100824. [PMID: 24992339 PMCID: PMC4081115 DOI: 10.1371/journal.pone.0100824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Apoptosis-inducing factor (AIF) plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC). In a group of RCC specimens, 84% (43 out of 51) had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation.
Collapse
Affiliation(s)
- Shengqiang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hongjin Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huadong Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SZ) (SX); (YL) (YL)
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail: (SZ) (SX); (YL) (YL)
| |
Collapse
|
9
|
MAP1S controls breast cancer cell TLR5 signaling pathway and promotes TLR5 signaling-based tumor suppression. PLoS One 2014; 9:e86839. [PMID: 24466264 PMCID: PMC3900661 DOI: 10.1371/journal.pone.0086839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/14/2013] [Indexed: 01/31/2023] Open
Abstract
Targeting TLR5 signaling in breast cancer represents a novel strategy in cancer immunotherapy. However, the underlying mechanism by which TLR5 signaling inhibits cancer cell proliferation and tumor growth has not been elucidated. In this study, we found TLR5 agonist flagellin inhibited the cell state of activation and induced autophagy, and reported that autophagy protein MAP1S regulated the flagellin/TLR5 signaling pathway in breast cancer cells through enhancement of NF-κB activity and cytokine secretion. Remarkably, MAP1S played a critical role in tumor suppression induced by flagellin, and knockdown of MAP1S almost completely abrogated the suppression of tumor growth and migration by flagellin treatment. In addition, elevated expression of MAP1S in response to flagellin feed-back regulated tumor inflammatory microenvironment in the late stages of TLR5 signaling through degradation of MyD88 in autophagy process. These results indicate a mechanism of antitumor activity that involves MAP1S-controlled TLR5 signaling in breast cancer.
Collapse
|
10
|
Hu J, Li Y, Li P. MARVELD1 Inhibits Nonsense-Mediated RNA Decay by Repressing Serine Phosphorylation of UPF1. PLoS One 2013; 8:e68291. [PMID: 23826386 PMCID: PMC3694864 DOI: 10.1371/journal.pone.0068291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 11/24/2022] Open
Abstract
We have observed low expression levels of MARVELD1, a novel tumor repressor, in multiple tumors; however, its function in normal cells has not been explored. We recently reported that MARVELD1 interacts with importin β1, which plays an important role in nonsense-mediated RNA decay(NMD). Here, we demonstrate that MARVELD1 substantially inhibits nonsense-mediated RNA decay by decreasing the pioneer round of translation but not steady-state translation, and we identify MARVELD1 as an important component of the molecular machinery containing UPF1 and Y14. Furthermore, we determined the specific regions of MARVELD1 and UPF1 responsible for their interaction. We also showed that MARVELD1 promotes the dissociation of SMG1 from UPF1, resulting in the repression of serine phosphorylation of UPF1, and subsequently blocks the recruitment of SMG5, which is required for ensuing SMG5-mediated exonucleolytic decay. Our observations provide molecular insight into the potential function of MARVELD1 in nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Jianran Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail:
| | - Ping Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Cochran SD, Cole JB, Null DJ, Hansen PJ. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet 2013; 14:49. [PMID: 23759029 PMCID: PMC3686577 DOI: 10.1186/1471-2156-14-49] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/23/2013] [Indexed: 11/22/2022] Open
Abstract
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production.
Collapse
Affiliation(s)
- Sarah D Cochran
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The epithelial tight junction (TJ) is the apical-most intercellular junction and serves as a gatekeeper for the paracellular pathway by permitting regulated passage of fluid and ions while restricting movement of large molecules. In addition to these vital barrier functions, TJ proteins are emerging as major signaling molecules that mediate crosstalk between the extracellular environment, the cell surface, and the nucleus. Biochemical studies have recently determined that epithelial TJs contain over a hundred proteins that encompass transmembrane proteins, scaffolding molecules, cytoskeletal components, regulatory elements, and signaling molecules. Indeed, many of these proteins have defined roles in regulating epithelial polarity, differentiation, and proliferation. This review will focus on recent findings that highlight a role for TJ proteins in controlling cell proliferation during epithelial homeostasis, wound healing, and carcinogenesis.
Collapse
Affiliation(s)
- Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|