1
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
2
|
Joung JY, Choi SH, Son CG. Interstitial Cells of Cajal: Potential Targets for Functional Dyspepsia Treatment Using Medicinal Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9952691. [PMID: 34306162 PMCID: PMC8263244 DOI: 10.1155/2021/9952691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The pathophysiology of functional dyspepsia (FD) remains uncertain, but the interstitial cells of Cajal (ICCs), pacemakers that regulate gastrointestinal motility, are garnering attention as key modulators and therapeutic targets in FD. This review comprehensively discusses the involvement of ICCs in the pharmacologic actions of FD and as therapeutic targets for herbal products for FD. METHODS A search of the literature was performed using PubMed by pairing "interstitial cells of Cajal" with "medicinal plant, herbal medicine, phytotherapy, flavonoids, or traditional Chinese medicine (TCM)." RESULTS From the 55 articles screened in the initial survey, 34 articles met our study criteria. The search results showed that herbal products can directly depolarize ICCs to generate pacemaker potentials and increase the expression of c-kit and stem cell factors, helping to repair ICCs. Under certain pathological conditions, medicinal plants also protect ICCs from oxidative stress and/or inflammation-induced impairment. Two representative herbal decoctions (Banhasasim-tang, , and Yukgunja-tang, ) have been shown to modulate ICC functions by both clinical and preclinical data. CONCLUSION This review strongly indicates the potential of herbal products to target ICCs and suggests that further ICC-based studies would be promising for the development of FD treatment agents.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Liver and Immunology Research Center, Oriental Medical College of Daejeon University, 75, Daedeok-daero 176 beon-gil, Seo-gu, Daejeon 35235, Republic of Korea
| | - Seo-Hyung Choi
- Department of Internal Medicine, Weedahm Oriental Hospital, 430, Yeoksam-ro, Gangnam-gu, Seoul 06200, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical College of Daejeon University, 75, Daedeok-daero 176 beon-gil, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
3
|
Liu JYH, Du P, Lu Z, Kung JSC, Huang IB, Hui JCM, Ng HSH, Ngan MP, Cui D, Jiang B, Chan SW, Rudd JA. Involvement of TRPV1 and TRPA1 in the modulation of pacemaker potentials in the mouse ileum. Cell Calcium 2021; 97:102417. [PMID: 33962108 DOI: 10.1016/j.ceca.2021.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The roles of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and subfamily A, member 1 (TRPA1) in mechanisms of gastrointestinal motility are complex. This study aimed to clarify the effects of several TRPV1 and TRPA1 ligands on the electrical potentials generated by pacemaker cells in the mouse-isolated ileum. METHOD The pacemaker potentials of ileal segments of mice were recorded extracellularly using a 60-channel microelectrode array. The dominant frequencies, average waveform periods and propagation velocities were quantified. The effects of TRPV1 and TRPA1 agonist and antagonist were compared with the baseline recordings. RESULTS The electrophysiological recordings showed that capsaicin (30 μM to 3 mM), resiniferatoxin (300 μM), capsazepine (100-300 μM), allyl isothiocyanate (300 μM), isovelleral (300 μM), icilin (300 μM), A-967,079 (10 μM), AP18 (20 μM) and HC-030,031 (50 μM) significantly reduced the pacemaker frequency and increased the waveform period relative to the baseline. Conversely, ruthenium red (300 μM) significantly increased the pacemaker frequency and reduced the waveform period. Capsaicin (3 mM) and AP18 (20 μM) also significantly reduced the propagation velocity. However, all tested antagonists failed to inhibit the effects of agonists. AMG9810 (300 μM), but not A-967,079 (300 μM), significantly inhibited the increases in pacemaker frequency caused by increased temperatures. CONCLUSION Our findings suggest that TRPV1 and TRPA1 play a minor role in regulating pacemaker potentials and that at non-specific actions at other TRP and ion channels most likely contributed to the overall effects on the electrophysiological recordings that we observed.
Collapse
Affiliation(s)
- Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jeng S C Kung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ianto B Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jessica C M Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Heidi S H Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - M P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong SAR, China
| | - S W Chan
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
5
|
Aihara Y, Fukuda Y, Takizawa A, Osakabe N, Aida T, Tanaka K, Yoshikawa S, Karasuyama H, Adachi T. Visualization of mechanical stress-mediated Ca 2+ signaling in the gut using intravital imaging. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:209-218. [PMID: 33117619 PMCID: PMC7573108 DOI: 10.12938/bmfh.2019-054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Mechanosensory systems have been implicated in the maintenance of gut homeostasis, but details on the related mechanisms are scarce. Recently, we generated a conditional Ca2+ biosensor yellow cameleon 3.60 (YC3.60)-expressing transgenic mouse model and established a five-dimensional (5D; x, y, z, time, and Ca2+) intravital imaging system for investigating lymphoid tissues and enteric epithelial cell responses. To validate this gut-sensing system, we visualized responses of enteric nervous system (ENS) cells in Nestin-Cre/YC3.60flox mice with specific YC3.60 expression. The ENS, including the myenteric (Auerbach's) and submucous (Meissner's) plexuses, could be visualized without staining in this mouse line, indicating that the probe produced sufficient fluorescent intensity. Furthermore, the myenteric plexus exhibited Ca2+ signaling during peristalsis without stimulation. Nerve endings on the surface of enteric epithelia also exhibited Ca2+ signaling without stimulation. Mechanical stress induced transient salient Ca2+ flux in the myenteric plexus and in enteric epithelial cells in the Nestin-Cre/YC3.60 and the CAG-Cre/YC3.60 lines, respectively. Furthermore, the potential TRPM7 inhibitors were shown to attenuate mechanical stress-mediated Ca2+ signaling. These data indicate that the present intravital imaging system can be used to visualize mechanosensory Ca2+ signaling in ENS cells and enteric epithelial cells.
Collapse
Affiliation(s)
- Yoshiko Aihara
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yota Fukuda
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-5780, Japan
| | - Akiyoshi Takizawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-5780, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
6
|
Liu L, Wu N, Wang Y, Zhang X, Xia B, Tang J, Cai J, Zhao Z, Liao Q, Wang J. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling. J Exp Clin Cancer Res 2019; 38:106. [PMID: 30819230 PMCID: PMC6396458 DOI: 10.1186/s13046-019-1061-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is crucial for metastasis and positively regulated by calcium-related signaling. The melastatin-related transient receptor potential 7 (TRPM7) regulates a non-selective cation channel and promotes cancer metastasis. However, the mechanisms underlying the action of TRPM7 in ovarian cancer are unclear. METHODS The expression of TRPM7 and EMT markers (Vimentin, N-cadherin, Twist and E-cadherin) in ovarian cancer samples was detected. TRPM7was knockdown by shRNA in Ovarian cancer cell lines to examine calcium [Ca2+]i, EMT markers and PI3K/AKT markers. Various cellular assays, such as invasion and migration, were performed in vitro, and further confirmed in vivo. RESULTS TRPM7 expression is negatively correlated with E-cadherin, but positively with N-cadherin, Vimentin and Twist expression in ovarian cancer samples. TRPM7 depletion inhibited the migration and invasion in SKOV3 and OVCAR3 cells. In addition, TRPM7 silencing decreased the lung metastasis of SKOV3 tumors and prolonged the survival of tumor-bearing mice. Similar to that of TRPM7 silencing, treatment with MK886, a potent 5-lipoxygenase inhibitor to reduce TRPM7 expression, and/or BAPTA-AM, an intracellular calcium chelator, significantly mitigated the Epidermal growth factor (EGF) or Insulin-like growth factors (IGF)-stimulated migration, invasion, and the EMT in ovarian cancer cells by decreasing the levels of intracellular calcium [Ca2+]i. Furthermore, treatment with LY2904002, a PI3K inhibitor, also inhibited the migration, invasion, and treatment with both LY2904002 and BAPTA-AM further enhanced their inhibition in ovarian cancer cells. Moreover, treatment with BAPTA-AM mitigated the IGF-stimulated migration, invasion, particularly in TRPM7-silenced ovarian cancer cells. Finally, TRPM7 silencing attenuated the PI3K/AKT activation, which was enhanced by BAPTA-AM, MK886 or LY2904002 treatment in ovarian cancer cells. CONCLUSIONS TRPM7 silencing inhibited the EMT and metastasis of ovarian cancer by attenuating the calcium-related PI3k/AKT activation. Our findings suggest that TRPM7 may be a therapeutic target for intervention of ovarian cancer.
Collapse
Affiliation(s)
- Lu Liu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
- University of South China, Hengyang, 421001 People’s Republic of China
| | - Nayiyuan Wu
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Ying Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Xiaoyun Zhang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Bing Xia
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jie Tang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jingting Cai
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Zitong Zhao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Qianjin Liao
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| | - Jing Wang
- Hunan clinicaI research center in gynecologic cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283, Tongzipo Road, Changsha, 410013 Hunan People’s Republic of China
| |
Collapse
|
7
|
Alom F, Matsuyama H, Nagano H, Fujikawa S, Tanahashi Y, Unno T. Involvement of transient receptor potential melastatin 4 channels in the resting membrane potential setting and cholinergic contractile responses in mouse detrusor and ileal smooth muscles. J Vet Med Sci 2019; 81:217-228. [PMID: 30518701 PMCID: PMC6395210 DOI: 10.1292/jvms.18-0631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here, we investigated the effects of 9-hydroxyphenanthrene (9-phenanthrol), a potent and selective transient receptor potential melastatin 4 (TRPM4) channel blocker, on the resting membrane potential and cholinergic contractile responses to elucidate the functional role of TRPM4 channels in the contractile activities of mouse detrusor and ileal longitudinal smooth muscles. We observed that, 9-phenanthrol (3-30 µM) did not significantly inhibit high K+-induced contractions in both preparations; however, 9-phenanthrol (10 µM) strongly inhibited cholinergic contractions evoked by electrical field stimulation in detrusor preparations compared to inhibitions in ileal preparations. 9-Phenanthrol (10 µM) significantly inhibited the muscarinic agonist, carbachol-induced contractile responses and slowed the maximum upstroke velocities of the contraction in detrusor preparations. However, the agent (10 µM) did not inhibit the contractions due to intracellular Ca2+ release evoked by carbachol, suggesting that the inhibitory effect of 9-phenanthrol may primarily be due to the inhibition of the membrane depolarization process incurred by TRPM4 channels. On the other hand, 9-phenanthrol (10 µM) did not affect carbachol-induced contractile responses in ileal preparations. Further, 9-phenanthrol (10 µM) significantly hyperpolarized the resting membrane potential and decreased the basal tone in both detrusor and ileal muscle preparations. Taken together, our results suggest that TRPM4 channels are constitutively active and are involved in setting of the resting membrane potential, thereby regulating the basal tone in detrusor and ileal smooth muscles. Thus, TRPM4 channels play a significant role in cholinergic signaling in detrusor, but not ileal, smooth muscles.
Collapse
Affiliation(s)
- Firoj Alom
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Nagano
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Saki Fujikawa
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium 2017; 67:166-173. [DOI: 10.1016/j.ceca.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/28/2022]
|
9
|
Burris SK, Wang Q, Bulley S, Neeb ZP, Jaggar JH. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels. Br J Pharmacol 2015; 172:2459-68. [PMID: 25573456 DOI: 10.1111/bph.13077] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE In arterial smooth muscle cells (myocytes), intravascular pressure stimulates membrane depolarization and vasoconstriction (the myogenic response). Ion channels proposed to mediate pressure-induced depolarization include several transient receptor potential (TRP) channels, including TRPM4, and transmembrane protein 16A (TMEM16A), a Ca(2+) -activated Cl(-) channel (CaCC). 9-Phenanthrol, a putative selective TRPM4 channel inhibitor, abolishes myogenic tone in cerebral arteries, suggesting that either TRPM4 is essential for pressure-induced depolarization, upstream of activation of other ion channels or that 9-phenanthrol is non-selective. Here, we tested the hypothesis that 9-phenanthrol is also a TMEM16A channel blocker, an ion channel for which few inhibitors have been identified. EXPERIMENTAL APPROACH Patch clamp electrophysiology was used to measure rat cerebral artery myocyte and human recombinant TMEM16A (rTMEM16A) currents or currents generated by recombinant bestrophin-1, another Ca(2+) -activated Cl(-) channel, expressed in HEK293 cells. KEY RESULTS 9-Phenanthrol blocked myocyte TMEM16A currents activated by either intracellular Ca(2+) or Eact , a TMEM16A channel activator. In contrast, 9-phenanthrol did not alter recombinant bestrophin-1 currents. 9-Phenanthrol reduced arterial myocyte TMEM16A currents with an IC50 of ∼12 μM. Cell-attached patch recordings indicated that 9-phenanthrol reduced single rTMEM16A channel open probability and mean open time, and increased mean closed time without affecting the amplitude. CONCLUSIONS AND IMPLICATIONS These data identify 9-phenanthrol as a novel TMEM16A channel blocker and provide an explanation for the previous observation that 9-phenanthrol abolishes myogenic tone when both TRPM4 and TMEM16A channels contribute to this response. 9-Phenanthrol may be a promising candidate from which to develop TMEM16A channel-specific inhibitors.
Collapse
Affiliation(s)
- Sarah K Burris
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
10
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
11
|
Guinamard R, Hof T, Del Negro CA. The TRPM4 channel inhibitor 9-phenanthrol. Br J Pharmacol 2014; 171:1600-13. [PMID: 24433510 PMCID: PMC3966741 DOI: 10.1111/bph.12582] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca(2+) -activated non-selective cation channel whose mechanism of action remains to be determined. Subsequent studies performed on other ion channels confirm the specificity of the drug for TRPM4. In addition, 9-phenanthrol modulates a variety of physiological processes through TRPM4 current inhibition and thus exerts beneficial effects in several pathological conditions. 9-Phenanthrol modulates smooth muscle contraction in bladder and cerebral arteries, affects spontaneous activity in neurons and in the heart, and reduces lipopolysaccharide-induced cell death. Among promising potential applications, 9-phenanthrol exerts cardioprotective effects against ischaemia-reperfusion injuries and reduces ischaemic stroke injuries. In addition to reviewing the biophysical effects of 9-phenanthrol, here we present information about its appropriate use in physiological studies and possible clinical applications.
Collapse
Affiliation(s)
- R Guinamard
- EA 4650, Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, UCBN, Normandie UniversitéCaen, France
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| | - T Hof
- EA 4650, Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, UCBN, Normandie UniversitéCaen, France
| | - C A Del Negro
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| |
Collapse
|
12
|
Nam JH, Kim WK, Kim BJ. Sphingosine and FTY720 modulate pacemaking activity in interstitial cells of Cajal from mouse small intestine. Mol Cells 2013; 36:235-244. [PMID: 23912597 PMCID: PMC3887975 DOI: 10.1007/s10059-013-0091-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 12/15/2022] Open
Abstract
Interstitial cells of Cajal (ICCs) are the pacemakers of the gastrointestinal tract, and transient receptor potential melastatin type 7 (TRPM7) and Ca(2+) activated Cl(-) channels (ANO1) are candidate the generators of pacemaker potentials in ICCs. The effects of D-erythro-sphingosine (SPH) and structural analogues of SPH, that is, N,N-dimethyl-Derythro-sphingosine (N,N-DMS), FTY720, and FTY720-P on the pacemaking activities of ICCs were examined using the whole cell patch clamp technique. SPH, N,N-DMS, and FTY720 decreased the amplitudes of pacemaker potentials in ICC clusters, but resting membrane potentials displayed little change. Also, perfusing SPH, N,N-DMS, or FTY720 in the bath reduced both inward and outward TRPM7-like currents in single ICCs, and inhibited ANO1 currents. The another structural analogue of SPH, FTY720-P was ineffective at the pacemaker potentials in ICC clusters and the TRPM7-like currents in single ICCs. Furthermore, FTY720-P had no effect on ANO1. These results suggest that SPH, N,N-DMS, and FTY720 modulate the pacemaker activities of ICCs, and that TRPM7 and ANO1 channels affect intestinal motility.
Collapse
Affiliation(s)
| | | | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| |
Collapse
|
13
|
Abstract
BACKGROUND The transient receptor potential melastatin 4 (TRPM4) channel is expressed in the sinoatrial node, but its physiologic roles in this tissue with cardiac pacemaker properties remain unknown. This Ca(2+)-activated nonselective cation channel (NSCCa) induces cell depolarization at negative potentials. It is implicated in burst generation in neurons and participates in induction of ectopic beating in cardiac ventricular preparations submitted to hypoxia/reoxygenation. Accordingly, TRPM4 may participate in action potential (AP) triggering in the sinoatrial node. OBJECTIVE The purpose of this study was to investigate the influence of TRPM4 on spontaneous heart beating. METHODS Spontaneous APs were recorded using intracellular microelectrodes in mouse, rat, and rabbit isolated right atria. RESULTS In the spontaneously beating mouse atrium, superfusion of the TRPM4-specific inhibitor 9-phenanthrol produced a concentration-dependent reduction in AP rate (maximal reduction = 62% that of control; EC50 = 8 × 10(-6) mol●L(-1)) without affecting other AP parameters. These effects were absent in TRPM4(-/-) mice. 9-Phenanthrol exerted a rate-dependent reduction with a higher effect at low rates. Similar results were obtained in rat. Moreover, application of 9-phenanthrol produced a reduction in diastolic depolarization slope in rabbit sinus node pacemaker cells. CONCLUSION These data showed that TRPM4 modulates beating rate. Pacemaker activity in the sinoatrial node results from the slow diastolic depolarization slope due to the "funny" current, Na/Ca exchange, and a Ca(2+)-activated nonselective cation current, which can be attributable in part to TRPM4 that may act against bradycardia.
Collapse
|
14
|
Kim BJ, Lee GS, Kim HW. Involvement of transient receptor potential melastatin type 7 channels on Poncirus fructus-induced depolarizations of pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res 2013; 2:62-69. [PMID: 28664056 PMCID: PMC5481676 DOI: 10.1016/j.imr.2013.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Extracts of Poncirus trifoliata (L.) Raf. (Rutaceae; PT) are widely used as a traditional medicine in Eastern Asia, especially for the treatment of gastrointestinal (GI) disorders related to GI motility. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract, and transient receptor potential melastatin type 7 (TRPM7) channels and Ca2+ activated Cl- channels are candidate pacemaker channels. METHODS In the present study, the effects of a methanolic extract of the dried roots of PT on ICC pacemaking activity were examined using the whole-cell patch-clamp technique. RESULTS The methanolic extract of PT (PTE) was found to decrease the amplitudes of pacemaker potentials in ICC clusters and to depolarize the resting membrane potentials in a concentration-dependent manner. Intracellular GDP-β-S suppressed PTE-induced depolarizations, and pretreatment with a U-73122 (a phospholipase C inhibitor) or with 2-APB (an 1,4,5-inositol triphosphate receptor inhibitor) abolished this generation of pacemaker potentials and suppressed PTE-induced effects. The applications of flufenamic acid, niflumic acid, waixenicin A, or 5-lipoxygenase inhibitors (NDGA or AA861) abolished this generation of pacemaker potentials and inhibited PTE-induced membrane depolarization. Furthermore, PTE inhibited TRPM7 channels but did not affect Ca2+-activated Cl- channels (both channels play important roles in the modulation of the pacemaking activity related to GI motility). CONCLUSION These results suggest that the PTE-induced depolarization of pacemaking activity occurs in a G-protein-, phospholipase C-, and 1,4,5-inositol triphosphate-dependent manner via TRPM7 channels in cultured ICCs from murine small intestine, which indicates that ICCs are PTE targets and that their interactions affect intestinal motility.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Guem San Lee
- Wonkwang University College of Korean Medicine, Iksan, Korea
| | - Hyung Woo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
15
|
Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 2013; 145:357-70. [PMID: 23404846 PMCID: PMC3636525 DOI: 10.1530/rep-12-0369] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Telocytes (TCs) have been described in various organs and species (www.telocytes.com) as cells with telopodes (Tps) – very long cellular extensions with an alternation of thin segments (podomers) and dilated portions (podoms). We examined TCs using electron microscopy (EM), immunohistochemistry (IHC), immunofluorescence (IF), time-lapse videomicroscopy and whole-cell patch voltage clamp. EM showed a three-dimensional network of dichotomous-branching Tps, a labyrinthine system with homocellular and heterocellular junctions. Tps release extracellular vesicles (mean diameter of 160.6±6.9 nm in non-pregnant myometrium and 171.6±4.6 nm in pregnant myometrium), sending macromolecular signals to neighbouring cells. Comparative measurements (non-pregnant and pregnant myometrium) of podomer thickness revealed values of 81.94±1.77 vs 75.53±1.81 nm, while the podoms' diameters were 268.6±8.27 vs 316.38±17.56 nm. IHC as well as IF revealed double c-kit and CD34 positive results. Time-lapse videomicroscopy of cell culture showed dynamic interactions between Tps and myocytes. In non-pregnant myometrium, patch-clamp recordings of TCs revealed a hyperpolarisation-activated chloride inward current with calcium dependence and the absence of L-type calcium channels. TCs seem to have no excitable properties similar to the surrounding smooth muscle cells (SMCs). In conclusion, this study shows the presence of TCs as a distinct cell type in human non-pregnant and pregnant myometrium and describes morphometric differences between the two physiological states. In addition, we provide a preliminary in vitro electrophysiological evaluation of the non-pregnant state, suggesting that TCs could influence timing of the contractile activity of SMCs.
Collapse
Affiliation(s)
- Sanda M Cretoiu
- Division of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | | | | | | | | |
Collapse
|
16
|
TRPM4 channels in smooth muscle function. Pflugers Arch 2013; 465:1223-31. [PMID: 23443854 DOI: 10.1007/s00424-013-1250-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 01/03/2023]
Abstract
The melastatin (M) transient receptor potential (TRP) channel TRPM4 is selective for monovalent cations and is activated by high levels of intracellular Ca(2+). TRPM4 is broadly distributed and may be involved in numerous functions, including electrical conduction in the heart, respiratory rhythm, immune response, and secretion of insulin by pancreatic β-cells. The significance of TRPM4 in smooth muscle cell function is reviewed here. Several studies indicate that TRPM4 channels are critically important for pressure-induced cerebral arterial myocyte depolarization and myogenic vasoconstriction as well as autoregulation of cerebral blood flow. Regulation of TRPM4 activity in arterial smooth muscle cells is complex and involves release of Ca(2+) from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and translocation of TRPM4 channels to the plasma membrane in response to protein kinase Cδ. TRPM4 is also present in colonic, urinary bladder, aortic, interlobar pulmonary and renal artery, airway, and corpus cavernosum smooth muscle cells, but its significance and regulation in these tissues is less well characterized.
Collapse
|
17
|
The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 2013; 59:11-9. [PMID: 23416167 DOI: 10.1016/j.yjmcc.2013.01.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 01/21/2023]
Abstract
The TRPM4 calcium-activated non-selective monovalent cation channel has been reported in mammalian atrial cardiomyocytes, but its implication in this tissue remains unknown. We used a combination of pharmacological tools and disruption of the Trpm4 gene in mice to investigate the channel implication in atrial action potential (AP). To search for TRPM4 activity, single channel currents were recorded on freshly isolated atrial cardiomyocytes using the patch-clamp technique. To investigate TRPM4 implication in AP, the transmembrane potential was recorded on the multicellular preparation using intracellular microelectrodes after isolating the mouse atrium, under electrical stimulation (rate=5Hz). Isolated atrial cardiomyocytes from the Trpm4(+/+) mouse expressed a typical TRPM4 current while cardiomyocytes from Trpm4(-/-) mouse did not. The Trpm4(+/+) mouse atrium exhibited AP durations at 50, 70 and 90% repolarization of 8.9±0.5ms, 16.0±1.0ms, and 30.2±1.6ms, respectively. The non-selective cation channel inhibitor flufenamic acid (10(-6) and 10(-5)mol·L(-1)) produced a concentration-dependent decrease in AP duration. Similarly, the TRPM4-inhibitor 9-phenanthrol reversibly reduced the duration of AP with an EC50 at 21×10(-6)mol·L(-1), which is similar to that reported for TRPM4 current inhibition in HEK-293 cells. 9-Phenanthrol had no effect on other AP parameters. The effect of 9-phenanthrol is markedly reduced in the mouse ventricle, which displays only weak expression of the channel. Moreover, atria from Trpm4(-/-) mice exhibited an AP that was 20% shorter than that of atria from littermate control mice, and the effect of 9-phenanthrol on AP was abolished in the Trpm4(-/-) mice. Our results showed that TRPM4 is implicated in the waveform of the atrial action potential. It is thus a potential target for pharmacological approaches against atrial arrhythmias.
Collapse
|
18
|
Smith AC, Hristov KL, Cheng Q, Xin W, Parajuli SP, Earley S, Malysz J, Petkov GV. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. Am J Physiol Cell Physiol 2013; 304:C467-77. [PMID: 23302778 DOI: 10.1152/ajpcell.00169.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the transient receptor potential (TRP) channel superfamily, including the Ca(2+)-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca(2+) imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca(2+) imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca(2+) levels. 9-Phenanthrol (0.1-30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1-7 μM and 70-80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5-50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling.
Collapse
Affiliation(s)
- Amy C Smith
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Simard C, Sallé L, Rouet R, Guinamard R. Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 2012; 165:2354-64. [PMID: 22014185 DOI: 10.1111/j.1476-5381.2011.01715.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia and subsequent re-oxygenation are associated with cardiac arrhythmias such as early afterdepolarizations (EADs), which may be partly explained by perturbations in cytosolic calcium concentration. Transient receptor potential melastatin 4 (TRPM4), a calcium-activated non-selective cation channel, is functionally expressed in the heart. Based on its biophysical properties, it is likely to participate in EADs. Hence, modulators of TRPM4 activity may influence arrhythmias. The aim of this study was to investigate the possible anti-arrhythmic effect of 9-phenanthrol, a TRPM4 inhibitor in a murine heart model of hypoxia and re-oxygenation-induced EADs. EXPERIMENTAL APPROACH Mouse heart was removed, and the right ventricle was pinned in a superfusion chamber. After a period of normoxia, the preparation was superfused for 2 h with a hypoxic solution and then re-oxygenated. Spontaneous electrical activity was investigated by intracellular microelectrode recordings. KEY RESULTS In normoxic conditions, the ventricle exhibited spontaneous action potentials. Application of the hypoxia and re-oxygenation protocol unmasked hypoxia-induced EADs, the occurrence of which increased under re-oxygenation. The frequency of these EADs was reduced by superfusion with either flufenamic acid, a blocker of Ca(2+) -dependent cation channels or with 9-phenanthrol. Superfusion with 9-phenanthrol (10(-5) or 10(-4) mol·L(-1) ) caused a dramatic dose-dependent abolition of EADs. CONCLUSIONS AND IMPLICATIONS Hypoxia and re-oxygenation-induced EADs can be generated in the mouse heart model. 9-Phenanthrol abolished EADs, which strongly suggests the involvement of TRPM4 in the generation of EAD. This identifies non-selective cation channels inhibitors as new pharmacological candidates in the treatment of arrhythmias.
Collapse
|
20
|
Kim BJ, Chang IY, Choi S, Jun JY, Jeon JH, Xu WX, Kwon YK, Ren D, So I. Involvement of Na(+)-leak channel in substance P-induced depolarization of pacemaking activity in interstitial cells of Cajal. Cell Physiol Biochem 2012; 29:501-510. [PMID: 22508057 PMCID: PMC3711580 DOI: 10.1159/000338504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2012] [Indexed: 01/04/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) are the pacemaking cells in the gastrointestinal muscles that generate the rhythmic oscillations in membrane potential known as slow waves. ICCs also mediate or transduce inputs from the enteric nervous system. Substance P (SubP) is a member of the family of mammalian tachykinin peptides that are predominantly released by enteric neurons. This study assessed the relationship of Na(+)-leak channel (NALCN) in the SubP-induced depolarization in pacemaking activity in the gastrointestinal tract. The patch-clamp technique for whole-cell recording was used in cultured cluster and single ICCs. Electrophysiological and pharmacological properties of SubP in ICC pacemaking activity were similar to those of NALCN. Reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemistry all showed abundant and localized expression of NALCN messenger RNA and protein in mouse small intestine. NALCN is involved in the SubP-induced depolarization of intestinal pacemaking activity. The protein is a potential target for pharmacological treatment of motor disorders of the gut.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan
| | - In Youb Chang
- Department of Anatomy, Chosun University College of Medicine, Gwangju
| | - Seok Choi
- Department of Physiology, Chosun University College of Medicine, Gwangju
| | - Jae Yeoul Jun
- Department of Physiology, Chosun University College of Medicine, Gwangju
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul
| | - Wen-Xie Xu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul
| |
Collapse
|
21
|
Kim BJ, Kim SY, Lee S, Jeon JH, Matsui H, Kwon YK, Kim SJ, So I. The role of transient receptor potential channel blockers in human gastric cancer cell viability. Can J Physiol Pharmacol 2012; 90:175-186. [PMID: 22308955 DOI: 10.1139/y11-114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient receptor potential cation channel, subfamily M, receptor 7 (TRPM7) is a ubiquitous divalent-selective ion channel with its own kinase domain. Human gastric cancer cells express the TRPM7 channel, and the presence of this channel is essential for cell survival. Recent studies have suggested that 5-lipoxygenase (5-LOX) inhibitors are potent blockers of the TRPM7 channels. The aim of this study was to show the effects of 5-LOX inhibitors on the growth and survival of gastric cancer cells. Among 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2,2-dimethylpropanoic acid (MK886) were potent blockers of TRPM7-like currents in gastric cancer cells and also induced cell death. However, zileuton was ineffective in suppressing TRPM7-like current activity and inducing cell death. Moreover, a specific transient receptor potential cation channel, subfamily C, member 3 (TRPC3) inhibitor, a pyrazole compound (Pyr3), and a specific melastatin TRP (TRPM4) inhibitor, 9-phenanthrol, did not affect TRPM7-like currents or induce cell death. We conclude that TRPM7 has an important role in the growth and survival of gastric cancer cells and a likely potential target for the pharmacological treatment of gastric cancer.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|