1
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
2
|
Selectivity and potency of natural product PIM kinase inhibitors identified by in silico docking. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02713-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Toth RK, Warfel NA. Targeting PIM Kinases to Overcome Therapeutic Resistance in Cancer. Mol Cancer Ther 2020; 20:3-10. [PMID: 33303645 DOI: 10.1158/1535-7163.mct-20-0535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Cancer progression and the onset of therapeutic resistance are often the results of uncontrolled activation of survival kinases. The proviral integration for the Moloney murine leukemia virus (PIM) kinases are oncogenic serine/threonine kinases that regulate tumorigenesis by phosphorylating a wide range of substrates that control cellular metabolism, proliferation, and survival. Because of their broad impact on cellular processes that facilitate progression and metastasis in many cancer types, it has become clear that the activation of PIM kinases is a significant driver of resistance to various types of anticancer therapies. As a result, efforts to target PIM kinases for anticancer therapy have intensified in recent years. Clinical and preclinical studies indicate that pharmacologic inhibition of PIM has the potential to significantly improve the efficacy of standard and targeted therapies. This review focuses on the signaling pathways through which PIM kinases promote cancer progression and resistance to therapy, as well as highlights biological contexts and promising strategies to exploit PIM as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Rachel K Toth
- University of Arizona Cancer Center, Tucson, Arizona
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, Arizona. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R, Vaucher E. The effects of anti-VEGF and kinin B 1 receptor blockade on retinal inflammation in laser-induced choroidal neovascularization. Br J Pharmacol 2020; 177:1949-1966. [PMID: 31883121 DOI: 10.1111/bph.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Age-related macular degeneration (AMD) is a complex neurodegenerative disease treated by anti-VEGF intravitreal injections. As inflammation is potentially involved in retinal degeneration, the pro-inflammatory kallikrein-kinin system is a possible alternative pharmacological target. Here, we investigated the effects of anti-VEGF and anti-B1 receptor treatments on the inflammatory mechanisms in a rat model of choroidal neovascularization (CNV). EXPERIMENTAL APPROACH Immediately after laser-induced CNV, Long-Evans rats were treated by eye-drop application of a B1 receptor antagonist (R-954) or by intravitreal injection of B1 receptor siRNA or anti-VEGF antibodies. Effects of treatments on gene expression of inflammatory mediators, CNV lesion regression and integrity of the blood-retinal barrier was measured 10 days later in the retina. B1 receptor and VEGF-R2 cellular localization was assessed. KEY RESULTS The three treatments significantly inhibited the CNV-induced retinal changes. Anti-VEGF and R-954 decreased CNV-induced up-regulation of B1 and B2 receptors, TNF-α, and ICAM-1. Anti-VEGF additionally reversed up-regulation of VEGF-A, VEGF-R2, HIF-1α, CCL2 and VCAM-1, whereas R-954 inhibited gene expression of IL-1β and COX-2. Enhanced retinal vascular permeability was abolished by anti-VEGF and reduced by R-954 and B1 receptor siRNA treatments. Leukocyte adhesion was impaired by anti-VEGF and B1 receptor inhibition. B1 receptors were found on astrocytes and endothelial cells. CONCLUSION AND IMPLICATIONS B1 receptor and VEGF pathways were both involved in retinal inflammation and damage in laser-induced CNV. The non-invasive, self-administration of B1 receptor antagonists on the surface of the cornea by eye drops might be an important asset for the treatment of AMD.
Collapse
Affiliation(s)
- Soumaya Hachana
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Olivier Fontaine
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Mark Lesk
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Liu J, Qu X, Shao L, Hu Y, Yu X, Lan P, Guo Q, Han Q, Zhang J, Zhang C. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther 2018; 19:160-168. [PMID: 29370558 PMCID: PMC5790343 DOI: 10.1080/15384047.2017.1414756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xinyu Qu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Liwei Shao
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Xin Yu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Peixiang Lan
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qie Guo
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
7
|
Abstract
Pim kinases are being implicated in oncogenic process in various human cancers. Pim kinases primarily deal with three broad categories of functions such as tumorigenesis, protecting cells from apoptotic signals and evading immune attacks. Here in this review, we discuss the regulation of Pim kinases and their expression, and how these kinases defend cancer cells from therapeutic and immune attacks with special emphasis on how Pim kinases maintain their own expression during apoptosis and cellular transformation, defend mitochondria during apoptosis, defend cancer cells from immune attack, defend cancer cells from therapeutic attack, choose localization, self-regulation, activation of oncogenic transcription, metabolic regulation and so on. In addition, we also discuss how Pim kinases contribute to tumorigenesis by regulating cellular transformation and glycolysis to reinforce the importance of Pim kinases in cancer and cancer stem cells.
Collapse
|
8
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
9
|
Qu Y, Zhang C, Du E, Wang A, Yang Y, Guo J, Wang A, Zhang Z, Xu Y. Pim-3 is a Critical Risk Factor in Development and Prognosis of Prostate Cancer. Med Sci Monit 2016; 22:4254-4260. [PMID: 27826135 PMCID: PMC5108370 DOI: 10.12659/msm.898223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pim-3 kinase is a highly homologous serine/threonine kinase that is overexpressed in hematological malignancies and solid tumors. Few studies have been conducted to define the role of Pim-3 in solid tumors, especially in prostate cancer. The aim of this study was to define the role of Pim-3 in development and prognosis of prostate cancer. MATERIAL AND METHODS We collected specimens from 160 patients with prostate cancer, as well as 100 patients with benign prostatic hyperplasia. Realtime polymerase chain reaction was used for the assessment of Pim-3 expression at the RNA level and Western blot was used to quantify the Pim-3 protein synthesis in 3 different cell lines. RESULTS We found that Pim-3 mRNA expression in prostate cancer tissue was significantly higher than that in benign prostatic hyperplasia tissue (p<0.05). Accordingly, the protein level expression of Pim-3 in prostate cancer cell lines was also significantly higher than that in control cells. In addition, the expression status of Pim-3 mRNA was significantly associated with pathological parameters such as pre-surgery prostate specific antigen, Gleason score, pathological stage, and lymphoid metastasis. High expression of Pim-3 also significantly decreased the survival rate of patients after surgery. CONCLUSIONS Pim-3 expression is an important risk factor for prostate cancer; we are the first team to report Pim-3 as a valuable biomarker in Chinese.
Collapse
Affiliation(s)
- Yanchun Qu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Changwen Zhang
- Department of Urology,, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China (mainland)
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Andi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Yuming Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Jianing Guo
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Aixiang Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China (mainland)
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China (mainland)
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China (mainland)
| |
Collapse
|
10
|
Ai J, Li W, Zeng R, Xie Z, Liu H, Hou M, Tan G. Blockage of SSRP1/Ets-1/Pim-3 signalling enhances chemosensitivity of nasopharyngeal carcinoma to docetaxel in vitro. Biomed Pharmacother 2016; 83:1022-1031. [PMID: 27525970 DOI: 10.1016/j.biopha.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/20/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare cancer in most parts of the world, but is prevalent in South China area. Besides, therapeutic outcome is still unsatisfactory for patients with refractory and relapsed NPC, even though receiving a second line of docetaxel-based chemotherapy. These reasons require a better understanding of mechanisms underlying the carcinogenesis, malignancy and chemoresistance. In the basis of our previous finding of SSRP1 over-expression in NPC cell lines, this study continuously discovered up-regulated Ets-1, phosphor-Ets-1 and Pim-3 in NPC tissues with immunohistochemistry assay and revealed a close correlation of these up-regulated proteins with NPC proliferation and invasion. Using gene-silencing technology followed by western blot and immunocytochemistry detections, SSRP1 was found to facilitate the translocation of phosphor-Ets-1 from cytoplasm to cell nucleus, but have marginal effect on Ets-1 expression and phosphorylation. Pim-3 was positively regulated by Ets-1. In NPC HNE-1 cells, all SSRP1, Ets-1 and Pim-3 knockdown diminished the cell proliferation, enhanced the apoptosis, as well as inhibited the autophagy, invasion and clonogenicity in the presence or absence of docetaxel at IC25. Exposure of HNE-1 cells to docetaxel (IC25) alone had modest effect on cell proliferation and autophagy, and was not as effective as docetaxel treatment after knockdown of SSRP1, Ets-1 or Pim-3 on induction of the apoptosis and on inhibition of the invasion and clonogenicity. Our data indicate that SSRP1/Ets-1/Pim-3 signalling is tightly associated with the proliferation, apoptosis, autophagy, invasion and clonogenicity of NPC cells, and blockage of this signalling facilitates chemosensitivity of the cells to docetaxel.
Collapse
Affiliation(s)
- Jingang Ai
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ruifang Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Honghui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Minghua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guolin Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
11
|
Zhuang H, Zhao MY, Hei KW, Yang BC, Sun L, Du X, Li YM. Aberrant expression of pim-3 promotes proliferation and migration of ovarian cancer cells. Asian Pac J Cancer Prev 2016; 16:3325-31. [PMID: 25921139 DOI: 10.7314/apjcp.2015.16.8.3325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pim kinase-3(Pim-3), a member of serine/threonine protein kinases, has been implicated in multiple human cancers and involved in Myc-induced tumorigenesis. However, little is known regarding its expression and biological function in human ovarian cancer. In this study we showed that the clinical significance and biological functions of Pim-3 in ovarian cancer and found that higher Pim-3 mRNA level are detected in ovarian cancer tissues than those in normal ovarian tissues. There are significant correlations between higher Pim-3 expression levels with the FIGO stage, histopathological subtypes, and distant metastasis in ovarian cancer patients. Lentivirus-mediated gene overexpression of Pim-3 significantly promotes the proliferation and migration of SKOV3 cell lines. Furthermore, MACC1 and Pim-3 expression were significantly correlated in human ovarian cancer cells, and overexpression of Pim-3 in ovary cancer cells increased MACC1 mRNA and protein expression. The data indicate that Pim-3 acts as a putative oncogene in ovary cancer and could be a viable diagnostic and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Medical Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
BACKGROUND The Provirus integrating site Moloney murine leukemia virus (Pim) family are proteins with serine/threonine kinase activity. Studies have demonstrated overexpression of Pims in cancer. To our knowledge, only a single study has examined Pim-1 in urothelial carcinoma. The aim of this investigation was to evaluate Pim-1, Pim-2, and Pim-3 in urothelial carcinoma and assess for expression that may contribute to disease progression and serve as a site for targeted therapy. METHODS This retrospective study included 137 cases taken from specimens from the University of Utah, Department of Pathology (2008 to 2011). Tissue was stained with antibodies against Pim-1, Pim-2, and Pim-3. Cases were classified into 3 groups, based upon current World Health Organization criteria (invasive high-grade urothelial carcinoma [IHG] [n=84], noninvasive high-grade urothelial carcinoma/carcinoma in situ [n=32], and noninvasive low-grade urothelial carcinoma [NILG] [n=21]). Cases were scored and recorded as positive or negative on the basis of the percentage of cells with cytoplasmic and/or nuclear staining. RESULTS NILG showed higher expression of Pim-1 (relative expression rate [RER]=2.28; 95% confidence interval [CI], 0.183-0.764) and Pim-3 (RER=3.06; 95% CI, 0.423-0.816) compared with other lesions. IHG had lower expression of Pim-1 (RER=0.31; 95% CI, 0.401-0.844) and Pim-3 (RER=0.354; 95% CI, 0.322-0.816) and noninvasive high-grade urothelial carcinoma (NIHG) demonstrated increased expression of Pim-1 and (RER=2.09; 95% CI, 0.124-0.739) and Pim-2 (RER=1.70; 95% CI, 0.151-0.591). At least 1 Pim kinase protein was expressed at the following rates: 49% in IHG, 66% in NIHG, and 76% in NILG. CONCLUSION A high percentage of urothelial carcinomas express Pim kinases. Pim expression differs in NILG, NIHG, and IHG lesions.
Collapse
|
13
|
Liu LH, Lai QN, Chen JY, Zhang JX, Cheng B. Overexpression of pim-3 and protective role in lipopolysaccharide-stimulated hepatic stellate cells. World J Gastroenterol 2015; 21:8858-8867. [PMID: 26269675 PMCID: PMC4528028 DOI: 10.3748/wjg.v21.i29.8858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate pim-3 expression in hepatic stellate cells (HSCs) stimulated by lipopolysaccharide (LPS), and its protective effect on HSCs.
METHODS: Rat HSC-T6 cells were stimulated by LPS. The effect of LPS on proliferation and apoptosis of HSC-T6 cells was investigated by methyl thiazoyltetrazolium (MTT) assay and flow cytometry after annexin V-fluorescein isothiocyanate/propidium iodide double staining. pim-3 mRNA and protein were detected by reverse transcriptase polymerase chain reaction and Western blotting at 48 h when HSC-T6 cells were stimulated with 1 μg/mL LPS for 0, 3, 6, 12, 24 and 48 h. The cells without stimulation served as controls. To study the effect of pim-3 kinase on HSC-T6 cells, si-pim3 (siRNA against pim-3) was transfected into HSC-T6 cells. HSC-T6 cells were subjected to different treatments, including LPS, si-pim3, or si-pim3 plus LPS, and control cells were untreated. Protein expression of pim-3 was detected at 48 h after treatment, and cell proliferation at 24 and 48 h by MTT assay. Apoptosis was detected by flow cytometry, and confirmed with caspase-3 activity assay.
RESULTS: LPS promoted HSC-T6 cell proliferation and protected against apoptosis. Significantly delayed upregulation of pim-3 expression induced by LPS occurred at 24 and 48 h for mRNA expression (pim-3/β-actin RNA, 24 or 48 h vs 0 h, 0.81 ± 0.20 or 0.78 ± 0.21 vs 0.42 ± 0.13, P < 0.05), and occurred at 12 h and peaked at 24 and 48 h for protein expression (pim-3/GAPDH protein, 12, or 24 or 48 h vs 0 h, 0.68 ± 0.12, 1.47 ± 0.25 or 1.51 ± 0.23 vs 0.34 ± 0.04, P < 0.01). pim-3 protein was ablated by si-pim3 and upregulated by LPS in HSC-T6 cells at 48 h after treatment (pim-3/GAPDH: si-pim3, si-pim3 plus LPS or LPS vs control, 0.11 ± 0.05, 0.12 ± 0.05 or 1.08 ± 0.02 vs 0.39 ± 0.03, P < 0.01). Ablation of pim-3 by si-pim3 in HSC-T6 cells partly abolished proliferation (OD at 24 h, si-pim3 group or si-pim3 plus LPS vs control, 0.2987 ± 0.050 or 0.4063 ± 0.051 vs 0.5267 ± 0.030, P < 0.01; at 48 h 0.4634 ± 0.056 or 0.5433 ± 0.031 vs 0.8435 ± 0.028, P < 0.01; si-pim3 group vs si-pim3 plus LPS, P < 0.01 at 24 h and P < 0.05 at 48 h), and overexpression of pim-3 in the LPS group increased cell proliferation (OD: LPS vs control, at 24 h, 0.7435 ± 0.028 vs 0.5267 ± 0.030, P < 0.01; at 48 h, 1.2136 ± 0.048 vs 0.8435 ± 0.028, P < 0.01). Ablation of pim3 with si-pim3 in HSC-T6 cells aggravated apoptosis (si-pim3 or si-pim3 plus LPS vs control, 42.3% ±1.1% or 40.6% ± 1.3% vs 16.8% ± 3.3%, P < 0.01; si-pim3 vs si-pim3 plus LPS, P > 0.05), and overexpression of pim-3 in the LPS group attenuated apoptosis (LPS vs control, 7.32% ± 2.1% vs 16.8% ± 3.3%, P < 0.05). These results were confirmed by caspase-3 activity assay.
CONCLUSION: Overexpression of pim-3 plays a protective role in LPS-stimulated HSC-T6 cells.
Collapse
|
14
|
Li YY, Mukaida N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J Gastroenterol 2014; 20:9392-9404. [PMID: 25071334 PMCID: PMC4110571 DOI: 10.3748/wjg.v20.i28.9392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/22/2014] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
Pim-3 is a member of the provirus integration site for Moloney murine leukemia virus (Pim) family proteins that exhibit serine/threonine kinase activity. Similar to the other Pim kinases (Pim-1 and Pim-2), Pim-3 is involved in many cellular processes, including cell proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs, including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines by promoting cell apoptosis. Pim-3 lacks the regulatory domains similarly as Pim-1 and Pim-2 lack, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 expression is regulated at transcriptional and post-transcriptional levels by transcription factors (e.g., Ets-1) and post-translational modifiers (e.g., translationally-controlled tumor protein), respectively. Pim-3 could promote growth and angiogenesis of human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 kinase may serve as a novel molecular target for developing targeting drugs against pancreatic and other types of cancer.
Collapse
|
15
|
Jang SH, Chung HY. MYC and PIM2 co-expression in mouse bone marrow cells readily establishes permanent myeloid cell lines that can induce lethal myeloid sarcoma in vivo. Mol Cells 2012; 34:201-8. [PMID: 22843119 PMCID: PMC3887814 DOI: 10.1007/s10059-012-0142-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/30/2023] Open
Abstract
The hematopoietic cell malignancy is one of the most prevalent type of cancer and the disease has multiple pathologic molecular signatures. Research on the origin of hematopoietic cancer stem cells and the mode of subsequent maintenance and differentiation needs robust animal models that can reproduce the transformation and differentiation event in vivo. Here, we show that co-transduction of MYC and PIM2 proto-oncogenes into mouse bone marrow cells readily establishes permanent cell lines that can induce lethal myeloid sarcoma in vivo. Unlike the previous doubly transgenic mouse model in which coexpression of MYC and PIM2 transgenes exclusively induced B cell lymphoma, we were able to show that the same combination of genes can also transform primary bone marrow myeloid cells in vitro resulting in permanent cell lines which induce myeloid sarcoma upon in vivo transplantation. By inducing cancerous transformation of fresh bone marrow cells in a controlled environment, the model we established will be useful for detailed study of the molecular events involved in initial transformation process of primary myeloid bone marrow cells and provides a model that can give insight to the molecular pathologic characteristics of human myeloid sarcoma, a rare presentation of solid tumors of undifferentiated myeloid blast cells associated with various types of myeloid leukemia.
Collapse
Affiliation(s)
- Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Hee Yong Chung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|