1
|
Zhou S, Tian D, Liu H, Lu X, Zhang D, Chen R, Yang S, Wu W, Wang F. Editing the RR-TZF Gene Subfamily in Rice Uncovers Potential Risks of CRISPR/Cas9 for Targeted Genetic Modification. Int J Mol Sci 2025; 26:1354. [PMID: 39941122 PMCID: PMC11818430 DOI: 10.3390/ijms26031354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR/Cas9 system offers a powerful tool for gene editing to enhance rice productivity. In this study, we successfully edited eight RR-TZF genes in japonica rice Nipponbare using CRISPR-Cas9 technology, achieving a high editing efficiency of 73.8%. Sequencing revealed predominantly short insertions or deletions near the PAM sequence, along with multi-base deletions often flanked by identical bases. Off-target analysis identified 5 out of 31 predicted sites, suggesting the potential for off-target effects, which can be mitigated by designing gRNAs with more than three base mismatches. Notably, new mutations emerged in the progeny of several gene-edited mutants, indicating inheritable genetic mutagenicity. Phenotypic analysis of homozygous mutants revealed varied agronomic traits, even within the same gene, highlighting the complexity of gene-editing outcomes. These findings underscore the importance of backcrossing to minimize off-target and inheritable mutagenicity effects, ensuring more accurate trait evaluation. This study offers insights into CRISPR/Cas9 mechanisms and uncertain factors and may inform future strategies for rice improvement, prompting further research into CRISPR/Cas9's precision and long-term impacts.
Collapse
Affiliation(s)
- Shufen Zhou
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (X.L.)
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Dagang Tian
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Huaqing Liu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Xiaozhuan Lu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (X.L.)
| | - Di Zhang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Rui Chen
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Shaohua Yang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (X.L.)
| | - Feng Wang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (D.T.); (H.L.); (D.Z.); (R.C.); (S.Y.)
| |
Collapse
|
2
|
Navarre C, Orval R, Peeters M, Bailly N, Chaumont F. Issue when expressing a recombinant protein under the control of p 35S in Nicotiana tabacum BY-2 cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1266775. [PMID: 38023881 PMCID: PMC10679441 DOI: 10.3389/fpls.2023.1266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Several recombinant proteins have been successfully produced in plants. This usually requires Agrobacterium-mediated cell transformation to deliver the T-DNA into the nucleus of plant cells. However, some genetic instability may threaten the integrity of the expression cassette during its delivery via A. tumefaciens, especially when the protein of interest is toxic to the bacteria. In particular, we found that a Tn3 transposon can be transferred from the pAL4404 Ti plasmid of A. tumefaciens LBA4404 into the expression cassette when using the widely adopted 35S promoter, thereby damaging T-DNA and preventing correct expression of the gene of interest in Nicotiana tabacum BY-2 suspension cells.
Collapse
Affiliation(s)
- Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | | | | | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Zhang Y, Ru Y, Shi Z, Wang H, Zhang J, Wu J, Pang H, Feng H. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Sci 2023; 18:20220732. [PMID: 37854318 PMCID: PMC10579877 DOI: 10.1515/biol-2022-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
In the process of the production of recombinant proteins by using an Agrobacterium-mediated transient gene expression system, the effectiveness of the control of light conditions pre- and post-agroinfiltration on efficiency of transient expression is worth being evaluated. In this study, Nicotiana benthamiana plants were used as a bioreactor to investigate the effects of different light conditions pre- and post-agroinfiltration on the transient expression of green fluorescent protein (GFP). The results showed that the plants grown under light condition for 5 weeks had the highest level of transient expression among those grown for 4-8 weeks. In the pre-agroinfiltration, the level of transient expression of GFP was obviously decreased by the increase in light intensity or by the shortening of the photoperiod. Although the shortening of the photoperiod post-agroinfiltration also decreased the level of transient expression, moderate light intensity post-agroinfiltration was needed for higher level of transient expression efficiency. However, there was no strong correlation between the transient expression efficiency and plant growth. The results suggested that light condition was an important factor affecting the level of transient expression in plants. Hence, light conditions should be optimized to obtain higher productivity of recombinant protein from transient expression systems.
Collapse
Affiliation(s)
- Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yi Ru
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou730046, Gansu, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Jianping Wu
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hailong Pang
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
4
|
Koprivica I, Jonić N, Diamantis D, Gajić D, Saksida T, Pejnović N, Tzakos AG, Stojanović I. Phenethyl ester of rosmarinic acid attenuates autoimmune responses during type 1 diabetes development in mice. Life Sci 2022; 288:120184. [PMID: 34838848 DOI: 10.1016/j.lfs.2021.120184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
AIMS Rosmarinic acid (RA) is a polyphenol that occurs in plants of the Lamiaceae family. Phenethyl ester of RA (PERA), a novel RA derivative, has been developed and evaluated in vivo in an animal model of type 1 diabetes (T1D). METHODS T1D was induced in male C57BL/6 mice using multiple low doses of streptozotocin (STZ) administered intraperitoneally for 5 consecutive days. Intraperitoneal administration of PERA (2.5 mg/kg bw) began from the first STZ injection and continued for 20 days. KEY FINDINGS PERA-treated mice exhibited lower incidence of T1D (monitored up to 38 days from the disease induction), and fluorescent histochemical analysis showed that their pancreatic islets expressed more insulin. PERA treatment significantly down-regulated the proportions of CD11b+ and CD11c+ myeloid cells in the immune cell infiltrates in the pancreatic islets early during T1D pathogenesis (on day 9 after T1D induction), while on day 15, PERA significantly reduced the proportions of CD11c+, CD8+, Th1 and Th17 cells. Simultaneously, it was found that the cells from the pancreatic infiltrates of PERA-treated mice produced significantly less reactive oxygen species than cells from the control group. SIGNIFICANCE These findings suggest that PERA efficiently prevented T1D development in mice. Interestingly, PERA attenuated the inflammatory process in the islets through temporally specific interference with the innate and adaptive immune response and therefore shows great promise for further clinical evaluation as a novel T1D therapeutic.
Collapse
Affiliation(s)
- Ivan Koprivica
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natalija Jonić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dimitris Diamantis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Dragica Gajić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andreas G Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Ivana Stojanović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Yassitepe JEDCT, da Silva VCH, Hernandes-Lopes J, Dante RA, Gerhardt IR, Fernandes FR, da Silva PA, Vieira LR, Bonatti V, Arruda P. Maize Transformation: From Plant Material to the Release of Genetically Modified and Edited Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:766702. [PMID: 34721493 PMCID: PMC8553389 DOI: 10.3389/fpls.2021.766702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Over the past decades, advances in plant biotechnology have allowed the development of genetically modified maize varieties that have significantly impacted agricultural management and improved the grain yield worldwide. To date, genetically modified varieties represent 30% of the world's maize cultivated area and incorporate traits such as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and improved nutritional quality. Maize transformation, which is a prerequisite for genetically modified maize development, is no longer a major bottleneck. Protocols using morphogenic regulators have evolved significantly towards increasing transformation frequency and genotype independence. Emerging technologies using either stable or transient expression and tissue culture-independent methods, such as direct genome editing using RNA-guided endonuclease system as an in vivo desired-target mutator, simultaneous double haploid production and editing/haploid-inducer-mediated genome editing, and pollen transformation, are expected to lead significant progress in maize biotechnology. This review summarises the significant advances in maize transformation protocols, technologies, and applications and discusses the current status, including a pipeline for trait development and regulatory issues related to current and future genetically modified and genetically edited maize varieties.
Collapse
Affiliation(s)
- Juliana Erika de Carvalho Teixeira Yassitepe
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Viviane Cristina Heinzen da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Hernandes-Lopes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ricardo Augusto Dante
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Isabel Rodrigues Gerhardt
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Rausch Fernandes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Priscila Alves da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Leticia Rios Vieira
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Vanessa Bonatti
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
7
|
Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6216304. [PMID: 30956982 PMCID: PMC6431451 DOI: 10.1155/2019/6216304] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
To feed the growing human population, global wheat yields should increase to approximately 5 tonnes per ha from the current 3.3 tonnes by 2050. To reach this goal, existing breeding practices must be complemented with new techniques built upon recent gains from wheat genome sequencing, and the accumulated knowledge of genetic determinants underlying the agricultural traits responsible for crop yield and quality. In this review we primarily focus on the tools and techniques available for accessing gene functions which lead to clear phenotypes in wheat. We provide a view of the development of wheat transformation techniques from a historical perspective, and summarize how techniques have been adapted to obtain gain-of-function phenotypes by gene overexpression, loss-of-function phenotypes by expressing antisense RNAs (RNA interference or RNAi), and most recently the manipulation of gene structure and expression using site-specific nucleases, such as CRISPR/Cas9, for genome editing. The review summarizes recent successes in the application of wheat genetic manipulation to increase yield, improve nutritional and health-promoting qualities in wheat, and enhance the crop's resistance to various biotic and abiotic stresses.
Collapse
|
8
|
An Insight into T-DNA Integration Events in Medicago sativa. Int J Mol Sci 2017; 18:ijms18091951. [PMID: 28895894 PMCID: PMC5618600 DOI: 10.3390/ijms18091951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanisms of transferred DNA (T-DNA) integration into the plant genome are still not completely understood. A large number of integration events have been analyzed in different species, shedding light on the molecular mechanisms involved, and on the frequent transfer of vector sequences outside the T-DNA borders, the so-called vector backbone (VB) sequences. In this work, we characterized 46 transgenic alfalfa (Medicago sativa L.) plants (events), generated in previous works, for the presence of VB tracts, and sequenced several T-DNA/genomic DNA (gDNA) junctions. We observed that about 29% of the transgenic events contained VB sequences, within the range reported in other species. Sequence analysis of the T-DNA/gDNA junctions evidenced larger deletions at LBs compared to RBs and insertions probably originated by different integration mechanisms. Overall, our findings in alfalfa are consistent with those in other plant species. This work extends the knowledge on the molecular events of T-DNA integration and can help to design better transformation protocols for alfalfa.
Collapse
|
9
|
Philips JG, Naim F, Lorenc MT, Dudley KJ, Hellens RP, Waterhouse PM. The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence. PLoS One 2017; 12:e0171311. [PMID: 28231340 PMCID: PMC5322946 DOI: 10.1371/journal.pone.0171311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Nicotiana benthamiana is employed around the world for many types of research and one transgenic line has been used more extensively than any other. This line, 16c, expresses the Aequorea victoria green fluorescent protein (GFP), highly and constitutively, and has been a major resource for visualising the mobility and actions of small RNAs. Insights into the mechanisms studied at a molecular level in N. benthamiana 16c are likely to be deeper and more accurate with a greater knowledge of the GFP gene integration site. Therefore, using next generation sequencing, genome mapping and local alignment, we identified the location and characteristics of the integrated T-DNA. As suggested from previous molecular hybridisation and inheritance data, the transgenic line contains a single GFP-expressing locus. However, the GFP coding sequence differs from that originally reported. Furthermore, a 3.2 kb portion of a transposon, appears to have co-integrated with the T-DNA. The location of the integration mapped to a region of the genome represented by Nbv0.5scaffold4905 in the www.benthgenome.com assembly, and with less integrity to Niben101Scf03641 in the www.solgenomics.net assembly. The transposon is not endogenous to laboratory strains of N. benthamiana or Agrobacterium tumefaciens strain GV3101 (MP90), which was reportedly used in the generation of line 16c. However, it is present in the popular LBA4404 strain. The integrated transposon sequence includes its 5' terminal repeat and a transposase gene, and is immediately adjacent to the GFP gene. This unexpected genetic arrangement may contribute to the characteristics that have made the 16c line such a popular research tool and alerts researchers, taking transgenic plants to commercial release, to be aware of this genomic hitchhiker.
Collapse
Affiliation(s)
- Joshua G. Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Michał T. Lorenc
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| | - Kevin J. Dudley
- Institute for Future Environments, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| | - Peter M. Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Endo M, Kumagai M, Motoyama R, Sasaki-Yamagata H, Mori-Hosokawa S, Hamada M, Kanamori H, Nagamura Y, Katayose Y, Itoh T, Toki S. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting. PLANT & CELL PHYSIOLOGY 2015; 56:116-25. [PMID: 25378689 PMCID: PMC4301741 DOI: 10.1093/pcp/pcu153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing.
Collapse
Affiliation(s)
- Masaki Endo
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Masahiko Kumagai
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan Present address: Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ritsuko Motoyama
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Harumi Sasaki-Yamagata
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Satomi Mori-Hosokawa
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Masao Hamada
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hiroyuki Kanamori
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yoshiaki Nagamura
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yuichi Katayose
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Takeshi Itoh
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Seiichi Toki
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, 236-0027 Japan
| |
Collapse
|
11
|
Resmi TR, Nivedhitha S, Karthikeyan C, Veluthambi K. Sri Lankan cassava mosaic virusreplication associated protein (Rep) triggers transposition of IS426inAgrobacterium. FEMS Microbiol Lett 2014; 360:42-50. [DOI: 10.1111/1574-6968.12584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Thulasi R. Resmi
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Sivarajan Nivedhitha
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Chockalingam Karthikeyan
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology; School of Biotechnology; Madurai Kamaraj University; Madurai Tamil Nadu India
| |
Collapse
|
12
|
|
13
|
Kawakatsu T, Kawahara Y, Itoh T, Takaiwa F. A whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy. DNA Res 2013; 20:623-31. [PMID: 23956243 PMCID: PMC3859328 DOI: 10.1093/dnares/dst036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic modification (GM) by Agrobacterium-mediated transformation is a robust and widely employed method to confer new traits to crops. In this process, a transfer DNA is delivered into the host genome, but it is still unclear how the host genome is altered by this event at single-base resolution. To decipher genomic discrepancy between GM crops and their host, we conducted whole-genome sequencing of a transgenic rice line OSCR11. This rice line expresses a seed-based edible vaccine containing two major pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. We revealed that genetic differences between OSCR11 and its host a123 were significantly less than those between a123 and its precedent cultivar Koshihikari. The pattern of nucleotide base substitution in OSCR11, relative to a123, was consistent with somaclonal variation. Mutations in OSCR11 probably occurred during the cell culture steps. In addition, strand-specific mRNA-Seq revealed similar transcriptomes of a123 and OSCR11, supporting genomic integrity between them.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- 1Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|