1
|
Kaur N, Lozada DN, Bhatta M, Barchenger DW, Khokhar ES, Nourbakhsh SS, Sanogo S. Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC PLANT BIOLOGY 2024; 24:416. [PMID: 38760676 PMCID: PMC11100198 DOI: 10.1186/s12870-024-05097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Current address: Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | | | | | - Ehtisham S Khokhar
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Seyed Shahabeddin Nourbakhsh
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soum Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
2
|
Shen Y, Mao L, Zhou Y, Sun Y, Lv J, Deng M, Liu Z, Yang B. Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1090. [PMID: 38674502 PMCID: PMC11054266 DOI: 10.3390/plants13081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Trichomes are specialized organs located in the plant epidermis that play important defense roles against biotic and abiotic stresses. However, the mechanisms regulating the development of pepper epidermal trichomes and the related regulatory genes at the molecular level are not clear. Therefore, we performed transcriptome analyses of A114 (less trichome) and A115 (more trichome) to dig deeper into the genes involved in the regulatory mechanisms of epidermal trichome development in peppers. In this study, the epidermal trichome density of A115 was found to be higher by phenotypic observation and was highest in the leaves at the flowering stage. A total of 39,261 genes were quantified by RNA-Seq, including 11,939 genes not annotated in the previous genome analysis and 18,833 differentially expressed genes. Based on KEGG functional enrichment, it was found that DEGs were mainly concentrated in three pathways: plant-pathogen interaction, MAPK signaling pathway-plant, and plant hormone signal transduction. We further screened the DEGs associated with the development of epidermal trichomes in peppers, and the expression of the plant signaling genes GID1B-like (Capana03g003488) and PR-6 (Capana09g001847), the transcription factors MYB108 (Capana05g002225) and ABR1-like (Capana04g001261), and the plant resistance genes PGIP-like (Capana09g002077) and At5g49770 (Capana08g001721) in the DEGs were higher at A115 compared to A114, and were highly expressed in leaves at the flowering stage. In addition, based on the WGCNA results and the establishment of co-expression networks showed that the above genes were highly positively correlated with each other. The transcriptomic data and analysis of this study provide a basis for the study of the regulatory mechanisms of pepper epidermal trichomes.
Collapse
Affiliation(s)
- Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| |
Collapse
|
3
|
Lu X, Zhou Z, Wang Y, Wang R, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Weng J, Zhou Y, Li X. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:1045854. [PMID: 36589123 PMCID: PMC9798238 DOI: 10.3389/fpls.2022.1045854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Maize with a high kernel protein content (PC) is desirable for human food and livestock fodder. However, improvements in its PC have been hampered by a lack of desirable molecular markers. To identify quantitative trait loci (QTL) and candidate genes for kernel PC, we employed a genotyping-by-sequencing strategy to construct a high-resolution linkage map with 6,433 bin markers for 275 recombinant inbred lines (RILs) derived from a high-PC female Ji846 and low-PC male Ye3189. The total genetic distance covered by the linkage map was 2180.93 cM, and the average distance between adjacent markers was 0.32 cM, with a physical distance of approximately 0.37 Mb. Using this linkage map, 11 QTLs affecting kernel PC were identified, including qPC7 and qPC2-2, which were identified in at least two environments. For the qPC2-2 locus, a marker named IndelPC2-2 was developed with closely linked polymorphisms in both parents, and when tested in 30 high and 30 low PC inbred lines, it showed significant differences (P = 1.9E-03). To identify the candidate genes for this locus, transcriptome sequencing data and PC best linear unbiased estimates (BLUE) for 348 inbred lines were combined, and the expression levels of the four genes were correlated with PC. Among the four genes, Zm00001d002625, which encodes an S-adenosyl-L-methionine-dependent methyltransferase superfamily protein, showed significantly different expression levels between two RIL parents in the endosperm and is speculated to be a potential candidate gene for qPC2-2. This study will contribute to further research on the mechanisms underlying the regulation of maize PC, while also providing a genetic basis for marker-assisted selection in the future.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ruiqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Ren FS, Yang HF, Jiao YS, Zhang RP, Guo ZW, Liu HJ, Sun Q, Li XJ, Tan XF, Zhang B, Zhen JQ, Dong YQ. Fertility conversion between cytoplasmic maintainer lines and restorer lines through molecular marker-assisted selection in pepper (Capsicum annuum L.). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Lozada DN, Nunez G, Lujan P, Dura S, Coon D, Barchenger DW, Sanogo S, Bosland PW. Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2021; 21:601. [PMID: 34922461 PMCID: PMC8684135 DOI: 10.1186/s12870-021-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phytophthora root rot, caused by Phytophthora capsici, is a major disease affecting Capsicum production worldwide. A recombinant inbred line (RIL) population derived from the hybridization between 'Criollo de Morellos-334' (CM-334), a resistant landrace from Mexico, and 'Early Jalapeno', a susceptible cultivar was genotyped using genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism (SNP) markers. A GBS-SNP based genetic linkage map for the RIL population was constructed. Quantitative trait loci (QTL) mapping dissected the genetic architecture of P. capsici resistance and candidate genes linked to resistance for this important disease were identified. RESULTS Development of a genetic linkage map using 1,973 GBS-derived polymorphic SNP markers identified 12 linkage groups corresponding to the 12 chromosomes of chile pepper, with a total length of 1,277.7 cM and a marker density of 1.5 SNP/cM. The maximum gaps between consecutive SNP markers ranged between 1.9 (LG7) and 13.5 cM (LG5). Collinearity between genetic and physical positions of markers reached a maximum of 0.92 for LG8. QTL mapping identified genomic regions associated with P. capsici resistance in chromosomes P5, P8, and P9 that explained between 19.7 and 30.4% of phenotypic variation for resistance. Additive interactions between QTL in chromosomes P5 and P8 were observed. The role of chromosome P5 as major genomic region containing P. capsici resistance QTL was established. Through candidate gene analysis, biological functions associated with response to pathogen infections, regulation of cyclin-dependent protein serine/threonine kinase activity, and epigenetic mechanisms such as DNA methylation were identified. CONCLUSIONS Results support the genetic complexity of the P. capsici-Capsicum pathosystem and the possible role of epigenetics in conferring resistance to Phytophthora root rot. Significant genomic regions and candidate genes associated with disease response and gene regulatory activity were identified which allows for a deeper understanding of the genomic landscape of Phytophthora root rot resistance in chile pepper.
Collapse
Affiliation(s)
- Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Guillermo Nunez
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Phillip Lujan
- Extension Plant Sciences, Plant Diagnostic Clinic, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Srijana Dura
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Danise Coon
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Soumaila Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Paul W Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
6
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
7
|
Wei J, Li J, Yu J, Cheng Y, Ruan M, Ye Q, Yao Z, Wang R, Zhou G, Deng M, Wan H. Construction of high-density bin map and QTL mapping of horticultural traits from an interspecific cross between Capsicum annuum and Chinese wild Capsicum frutescens. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1787863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jiaxiang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Jun Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jiahong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, PR China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| |
Collapse
|
8
|
Ono T, Kouguchi T, Ishikawa A, Nagano AJ, Takenouchi A, Igawa T, Tsudzuki M. Quantitative trait loci mapping for the shear force value in breast muscle of F2 chickens. Poult Sci 2019; 98:1096-1101. [PMID: 30329107 DOI: 10.3382/ps/pey493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The shear force value is one of the major traits that determine meat quality. In the present study, we performed QTL analysis for chicken breast muscle shear force value at 7 wk of age using 545 single nucleotide polymorphism (SNP) markers developed via restriction-site associated DNA sequencing (RAD-seq). An F2 resource family was generated by mating Oh-Shamo, a native Japanese chicken breed, and the White Plymouth Rock chicken breed. A total of 215 F2 birds were produced. Simple interval mapping revealed one significant main-effect QTL between 6.28 and 8.10 Mb SNPs on the chromosome Z with a logarithm of odds score of 5.53 at the genome-wide 5% level. At this QTL, the confidence interval, phenotypic variance explained, and additive effect were 26 cM, 12.24%, and -0.31 in males and -0.34 in females, respectively. No QTL with epistatic interaction effects were detected. To our knowledge, this is the first report on a QTL affecting the shear force value in the chicken breast muscle, using SNP markers derived from RAD-seq.
Collapse
Affiliation(s)
- Takashi Ono
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | - Akira Ishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.,Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Atsushi Takenouchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takeshi Igawa
- Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masaoki Tsudzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
9
|
Zhu Z, Sun B, Wei J, Cai W, Huang Z, Chen C, Cao B, Chen G, Lei J. Construction of a high density genetic map of an interspecific cross of Capsicum chinense and Capsicum annuum and QTL analysis of floral traits. Sci Rep 2019; 9:1054. [PMID: 30705330 PMCID: PMC6355862 DOI: 10.1038/s41598-018-38370-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/27/2018] [Indexed: 11/09/2022] Open
Abstract
The yield of pepper plants (Capsicum spp.) is their most important trait and is affected by the flower number and flowering time. Capsicum annuum produces a single flower per node and has an early flowering habit. By contrast, Capsicum chinense yields multiple flowers per node and has a late flowering character. However, the genetic mechanism underlying the control of these floral traits remains largely unknown. In this study, 150 F2 populations from an interspecific cross between the inbred lines 740 (C. chinense) and CA1 (C. annuum) and their parents were used to construct a molecular genetic linkage map using the specific length amplified fragment sequencing (SLAF-seq) technique. This linkage map, spanning 1,586.78 cM in length, contained 9,038 markers on 12 chromosomes, with a mean marker distance of 0.18 cM. Phenotypic data on the flowering time and flower number per node were collected over multiple years, and QTL analysis identified 6 QTLs for the flowering time and flower number per node by composite interval mapping (CIM) and genome-wide composite interval mapping (GCIM) methods at least in two environments. The candidate genes within the major QTL were predicted. In the major flowering time QTL, the candidate gene Capana02g000700, which encodes the homeotic protein APETALA2, was identified. Quantitative reverse-transcription PCR (qRT-PCR) analysis indicated that its expression level in 740 was higher than that in CA1. Gene expression analysis indicated that the expression of Capana02g000700 was significantly upregulated in flowers, and many floral development-related genes were found to be coexpressed with Capana02g000700, supporting the function of this gene in association with flowering time in C. chinense and C. annuum species.
Collapse
Affiliation(s)
- Zhangsheng Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binmei Sun
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianlang Wei
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Cai
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhubin Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoju Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianjun Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Li W, Cheng J, Wu Z, Qin C, Tan S, Tang X, Cui J, Zhang L, Hu K. An InDel-based linkage map of hot pepper ( Capsicum annuum). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:32. [PMID: 25620878 PMCID: PMC4300394 DOI: 10.1007/s11032-015-0219-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/27/2014] [Indexed: 05/03/2023]
Abstract
Two independent pepper (Capsicum annuum) genomes were published recently, opening a new era of molecular genetics research on pepper. However, pepper molecular marker technologies are still mainly focusing on the simple sequence repeats derived from public database or genomic library. The development and application of the third generation marker system such as single nucleotide polymorphisms, structure variations as well as insertion/deletion polymorphisms (InDels) is still in its infancy. In the present study, we developed InDel markers for pepper genetic mapping with the convenience of two whole-genome re-sequenced inbred lines BA3 (C. annuum) and B702 (C. annuum). A total of 154,519 and 149,755 InDel (1-5 bp) sites were identified for BA3 and B702, respectively, by the alignment of re-sequencing reads to Zunla-1 reference genome. Then, 14,498 InDel sites (only 4 and 5 bp) that are different between BA3 and B702 were predicted. Finally, within a random set of 1,000 primer pairs, 251 InDel markers were validated and mapped onto a linkage map using F2 population derived from the intraspecific cross BA3 × B702. The first InDel-based map, named as BB-InDel map, consisted of 12 linkage groups, covered a genetic distance of 1,178.01 cM and the average distance between bin markers was 5.01 cM. Compared to the Zunla-1 reference physical map, high consistency was observed on all 12 chromosomes, and the total length of scaffold anchored and physical distance covered by this map was 299.66 and 2,558.68 Mb, respectively, which accounted for 8.95 and 76.38 % of the Zunla-1 reference genome (3.35 Gb), respectively. Furthermore, 37 scaffolds (total length of 36.21 Mb) from the pseudo-chromosome (P0) of the current genome assembly were newly assigned to the corresponding chromosomes by 40 InDel markers. Thus, this map provided good genome coverage and would be useful for basic and applied research in pepper.
Collapse
Affiliation(s)
- Weipeng Li
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Zhongkai Road 501, Guangzhou, 510225 Guangdong China
| | - Cheng Qin
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
- Pepper Institute, Zunyi Academy of Agricultural Sciences, Zunyi, 563102 Guizhou China
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130 Sichuan China
| | - Shu Tan
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Xin Tang
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Junjie Cui
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Li Zhang
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Wushan Road 483, Guangzhou, 510642 Guangdong China
| |
Collapse
|
11
|
Kim JE, Oh SK, Lee JH, Lee BM, Jo SH. Genome-wide SNP calling using next generation sequencing data in tomato. Mol Cells 2014; 37:36-42. [PMID: 24552708 PMCID: PMC3907006 DOI: 10.14348/molcells.2014.2241] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 01/03/2023] Open
Abstract
The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.
Collapse
Affiliation(s)
| | - Sang-Keun Oh
- Plant Genomics and Breeding Institutes, Seoul National University, Seoul 151-921,
Korea
| | | | - Bo-Mi Lee
- SEEDERS Inc., Daejeon 305-509,
Korea
| | | |
Collapse
|