1
|
Deng Y, Yang S, Xu H, Ding X, Xu Y, Ye Z, Chen Y, Zhang Z, Lin J, Xiong H, Zhang Z, Yang K, Hu Y, Xu K, Luo C, Chen S, Lin H, Li Z. Fluorescence-Coupled Ubiquitination Assay as a High-Throughput Screening Strategy for Novel Cereblon Degraders. J Med Chem 2025; 68:10111-10127. [PMID: 40333540 DOI: 10.1021/acs.jmedchem.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Cereblon (CRBN)-based protein degradation, via molecular glue degraders (MGDs) and proteolysis-targeting chimeras (PROTACs), is a promising cancer treatment strategy in targeted protein degradation (TPD). However, novel degraders discovery remains limited due to the lack of robust, high-throughput screening (HTS) methods for processing pools of purified compounds or complex chemical synthesis mixtures. Here, we introduce an innovative HTS strategy that employs a highly sensitive, fluorescence-coupled ubiquitination assay to identify CRBN-based degraders. This approach tracks ubiquitinated target proteins via gel-based analyses, and thereby progressively narrows down the list of potential degrader molecules from large-scale compound libraries or chemical reaction mixtures. Using this strategy, we identified LL-BPTF-8, a promising lead compound of PROTAC degrader with high potency and selectivity that targets the bromodomain PHD finger transcription factor (BPTF). Overall, our method offers a low-cost, rapid, and versatile platform for the HTS of protein degrader candidates, significantly streamlining the discovery of novel degraders.
Collapse
Affiliation(s)
- Yanan Deng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shiling Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hesong Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiyao Ding
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ying Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Zhengzheng Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yan Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zemin Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jin Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Huan Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Zizhong Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kun Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yiran Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ke Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhihai Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Phillips M, Cook ED, Marunde MR, Tonelli M, Khan L, Henrickson A, Lignos JM, Stein JL, Stein GS, Frietze S, Demeler B, Glass KC. The CECR2 bromodomain displays distinct binding modes to select for acetylated histone proteins versus non-histone ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627393. [PMID: 39713312 PMCID: PMC11661176 DOI: 10.1101/2024.12.09.627393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay. The CECR2-BRD selectively binds acetylated histone H3 and H4 ligands, exhibiting a preference for multi-acetylated over mono-acetylated targets. The highest affinity was observed for tetra-acetylated histone H4. Neighboring post-translational modifications, including methylation and phosphorylation, modulate acetyllysine recognition, with significant effects observed for histone H3 ligands. Additionally, this study explored the interaction of the CECR2-BRD with the acetylated RelA subunit of NF-κB, a pivotal transcription factor in inflammatory signaling. Dysregulated NF-κB signaling is implicated in numerous pathologies, including cancer progression, with acetylation of RelA at lysine 310 (K310ac) being critical for its transcriptional activity. Recent evidence linking the CECR2-BRD to RelA suggests it plays a role in inflammatory and metastatic pathways, underscoring the need to understand the molecular basis of this interaction. We found the CECR2-BRD binds to acetylated RelA with micromolar affinity, and uses a distinctive binding mode to recognize this non-histone ligand. These results provide new insight on the role of CECR2 in regulating NF-κB-mediated inflammatory pathways. Functional mutagenesis of critical residues, such as Asn514 and Asp464, highlight their roles in ligand specificity and binding dynamics. Notably, the CECR2-BRD remained monomeric in solution and exhibited differential conformational responses upon ligand binding, suggesting adaptive recognition mechanisms. Furthermore, the CECR2-BRD exclusively interacts with nucleosome substrates containing multi-acetylated histones, emphasizing its role in transcriptional activation within euchromatic regions. These findings position the CECR2-BRD as a key chromatin reader and a promising therapeutic target for modulating transcriptional and inflammatory processes, particularly through the development of selective bromodomain inhibitors.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Elizabeth D. Cook
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | | | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laiba Khan
- EpiCypher Inc., Durham, North Carolina 27709, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - James M. Lignos
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karen C. Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Lu H, Lu T, Zu S, Duan Z, Guang Y, Li Q, Ma J, Chen D, Li B, Lu W, Jiang H, Luo C, Ye D, Chen K, Lin H. Discovery of a highly potent CECR2 bromodomain inhibitor with 7H-pyrrolo[2,3-d] pyrimidine scaffold. Bioorg Chem 2022; 123:105768. [PMID: 35378372 DOI: 10.1016/j.bioorg.2022.105768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Cat eye syndrome chromosome region candidate 2 (CECR2) bromodomain is a module of CECR2-containing remodeling factor (CERF), which is a chromatin remodeling complex correlating with transcriptional control and adjustment of chromatin architecture. Potent chemical probes would be beneficial to gain insights into the biochemical and pharmacological functions of CECR2 BRD. Herein, we report the discovery of a series of CECR2 BRD inhibitors with 7H-pyrrolo[2,3-d] pyrimidine scaffold based on molecular docking model of TP-248 and CECR2 BRD. The most potent inhibitor of this series, DC-CBi-22 with IC50 of 8.0 ± 1.4 nM against CECR2 BRD and selectivity over BPTF BRD up to 24.9-fold. The SARs were detailed according to molecular docking. DC-CBi-22 would serve as a useful chemical probe for the study of CECR2.
Collapse
Affiliation(s)
- Haibo Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tian Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; GuiZhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Shijia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhe Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Yiman Guang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingyi Ma
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Bo Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenchao Lu
- Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Cheng Luo
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Deyong Ye
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Kaixian Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Lu H, Zu S, Duan Z, Feng Y, Wang J, Ma J, Li Q, Chen D, Li B, Chen K, Luo C, Lin J, Lu T, Lin H. Discovery of
CECR2
Bromodomain Inhibitors with High Selectivities over
BPTF
Bromodomain. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haibo Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road Shanghai 201203 China
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
| | - Shijia Zu
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences, 19 Yuquan Road Beijing 100049 China
| | - Zhe Duan
- School of Pharmacy Nanchang University Nanchang 330006 China
| | - Yueyao Feng
- Biomedical Research Center of South China, College of Life Sciences Fujian Normal University Fuzhou 350117 China
| | - Jie Wang
- Biomedical Research Center of South China, College of Life Sciences Fujian Normal University Fuzhou 350117 China
| | - Jingyi Ma
- University of Chinese Academy of Sciences, 19 Yuquan Road Beijing 100049 China
- Laboratory of Pharmaceutical Analysis, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi‐Tech Park Shanghai 201203 China
| | - Qi Li
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
| | - Dongying Chen
- University of Chinese Academy of Sciences, 19 Yuquan Road Beijing 100049 China
- Laboratory of Pharmaceutical Analysis, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi‐Tech Park Shanghai 201203 China
| | - Bo Li
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
| | - Kaixian Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road Shanghai 201203 China
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences, 19 Yuquan Road Beijing 100049 China
| | - Cheng Luo
- School of Pharmacy, Fudan University, 826 Zhangheng Road Shanghai 201203 China
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences, 19 Yuquan Road Beijing 100049 China
| | - Jin Lin
- School of Pharmacy Fujian Medical University Fuzhou 350122 China
| | - Tian Lu
- GuiZhou University of Traditional Chinese Medicine Guizhou 550025 China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences Fujian Normal University Fuzhou 350117 China
- State Key Laboratory of Drug Research, , Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai 201203 China
| |
Collapse
|
6
|
Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, Zhang Y, An Y, Chen JF, Chan LH, Aoshima A, Lang SM, Tang Z, Che X, Li Y, Rutter SJ, Bossuyt V, Chen X, Morrow JS, Pusztai L, Rimm DL, Yin M, Yan Q. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med 2022; 14:eabf5473. [PMID: 35108062 PMCID: PMC9003667 DOI: 10.1126/scitranslmed.abf5473] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the major cause of cancer-related deaths due to the lack of effective therapies. Emerging evidence suggests that certain epigenetic and transcriptional regulators drive cancer metastasis and could be targeted for metastasis treatment. To identify epigenetic regulators of breast cancer metastasis, we profiled the transcriptomes of matched pairs of primary breast tumors and metastases from human patients. We found that distant metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. The acetyl-lysine reader, cat eye syndrome chromosome region candidate 2 (CECR2), was the top up-regulated epigenetic regulator in metastases associated with an increased abundance of M2 macrophages and worse metastasis-free survival. CECR2 was required for breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, the nuclear factor κB (NF-κB) family member v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) recruits CECR2 to increase chromatin accessibility and activate the expression of their target genes. These target genes include multiple metastasis-promoting genes, such as TNC, MMP2, and VEGFA, and cytokine genes CSF1 and CXCL1, which are critical for immunosuppression at metastatic sites. Consistent with these results, pharmacological inhibition of CECR2 bromodomain impeded NF-κB-mediated immune suppression by macrophages and inhibited breast cancer metastasis. These results reveal that targeting CECR2 may be a strategy to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zongzhi Z. Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Keisuke Aoshima
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tianrui Xu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yangyi Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongyan An
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jocelyn F. Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lok Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Asako Aoshima
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhenwei Tang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuanlin Che
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Li
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sara J. Rutter
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Veerle Bossuyt
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Breast Medical Oncology, Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - David. L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mingzhu Yin
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14020346. [PMID: 35053509 PMCID: PMC8773583 DOI: 10.3390/cancers14020346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Several histone deacetylase inhibitors have been approved by FDA for cancer treatment. Intensive efforts have been devoted to enhancing its anti-cancer efficacy by combining it with various other agents. Yet, no guideline is available to assist in the choice of candidate drugs for combination towards optimal solutions for different clinical problems. Thus, it is imperative to characterize the primary cancer hallmarks that lysine acetylation is associated with and gain knowledge on the key cancer features that each combinatorial onco-therapeutic modality targets to aid in the combinatorial onco-therapeutic design. Cold atmospheric plasma represents an emerging anti-cancer modality via manipulating cellular redox level and has been demonstrated to selectively target several cancer hallmarks. This review aims to delineate the intrinsic connections between lysine acetylation and cancer properties, and forecast opportunities histone deacetylase inhibitors may have when combined with cold atmospheric plasma as novel precision onco-therapies. Abstract Acetylation, a reversible epigenetic process, is implicated in many critical cellular regulatory systems including transcriptional regulation, protein structure, activity, stability, and localization. Lysine acetylation is the most prevalent and intensively investigated among the diverse acetylation forms. Owing to the intrinsic connections of acetylation with cell metabolism, acetylation has been associated with metabolic disorders including cancers. Yet, relatively little has been reported on the features of acetylation against the cancer hallmarks, even though this knowledge may help identify appropriate therapeutic strategies or combinatorial modalities for the effective treatment and resolution of malignancies. By examining the available data related to the efficacy of lysine acetylation against tumor cells and elaborating the primary cancer hallmarks and the associated mechanisms to target the specific hallmarks, this review identifies the intrinsic connections between lysine acetylation and cancer hallmarks and proposes novel modalities that can be combined with HDAC inhibitors for cancer treatment with higher efficacy and minimum adverse effects.
Collapse
|
8
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
9
|
Wang X, Xu C, Wang S, Huang W, Liu Y, Zhang X, Li N, Gao Z, Wang F, Zhang N, Guan J, Yi H, Liu F. A novel tumor suppressor CECR2 down regulation links glutamine metabolism contributes tumor growth in laryngeal squamous cell carcinoma. Clin Transl Oncol 2021; 23:1942-1954. [PMID: 33826083 DOI: 10.1007/s12094-021-02603-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Glutamine plays an important role in tumor metabolism and progression. This research aimed to find out how Gln exert their effects on laryngeal squamous cell carcinoma (LSCC). METHODS Cell proliferation was measured by CCK8 and EdU assay, mitochondrial bioenergetic activity was measured by mitochondrial stress tests. Gene expression profiling was revealed by RNA sequencing and validated by RT-qPCR. In LSCC patients, protein expression in tumor and adjacent tissues was examined and scored by IHC staining. RNAi was performed by stably expressed shRNA in TU177 cells. In vivo tumor growth analysis was performed using a nude mouse tumorigenicity model. RESULTS Gln deprivation suppressed TU177 cell proliferation, which was restored by αKG supplementation. By transcriptomic analysis, we identified CECR2, which encodes a histone acetyl-lysine reader, as the downstream target gene for Gln and αKG. In LSCC patients, the expression of CECR2 in tumors was lower than adjacent tissues. Furthermore, deficiency of CECR2 promoted tumor cell growth both in vitro and in vivo, suggesting it has tumor suppressor effects. Besides, cell proliferation inhibited by Gln withdrawal could be restored by CECR2 depletion, and the proliferation boosted by αKG supplementation could be magnified either, suggested that CECR2 feedback suppressed Gln and αKG's effect on tumor growth. Transcriptomic profiling revealed CECR2 regulated the expression of a series of genes involved in tumor progression. CONCLUSION We confirmed the Gln-αKG-CECR2 axis contributes to tumor growth in LSCC. This finding provided a potential therapeutic opportunity for the use of associated metabolites as a potential treatment for LSCC.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Chong Xu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Shengming Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Weijun Huang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Jian Guan
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China. .,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China.
| | - Feng Liu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai JiaoTong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui, 200233, Shanghai, China. .,Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Xuhui, 200233, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Cat eye syndrome (CES), a human genetic disorder caused by the inverted duplication of a region on chromosome 22, has been known since the late 1890s. Despite the significant impact this disorder has on affected individuals, models for CES have not been produced due to the difficulty of effectively duplicating the corresponding chromosome region in an animal model. However, the study of phenotypes associated with individual genes in this region such as CECR2 may shed light on the etiology of CES. In this study we have shown that deleterious loss of function mutations in mouse Cecr2 effectively demonstrate many of the abnormal features present in human patients with CES, including coloboma and specific skeletal, kidney and heart defects. Beyond phenotypic analyses we have demonstrated the importance of utilizing multiple genetic backgrounds to study disease models, as we see major differences in penetrance of Cecr2-related abnormal phenotype between mouse strains, reminiscent of the variability in the human syndrome. These findings suggest that Cecr2 is involved in the abnormal features of CES and that Cecr2 mice can be used as a model system to study the wide range of phenotypes present in CES.
Collapse
|
11
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell Mol Life Sci 2021; 78:1139-1161. [PMID: 33001247 PMCID: PMC11072783 DOI: 10.1007/s00018-020-03646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Neve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France.
| | - Nicolas Jonckheere
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Audrey Vincent
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
12
|
Lee D, Lee DY, Hwang YS, Seo HR, Lee SA, Kwon J. The Bromodomain Inhibitor PFI-3 Sensitizes Cancer Cells to DNA Damage by Targeting SWI/SNF. Mol Cancer Res 2020; 19:900-912. [PMID: 33208498 DOI: 10.1158/1541-7786.mcr-20-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
Many chemotherapeutic drugs produce double-strand breaks (DSB) on cancer cell DNA, thereby inducing cell death. However, the DNA damage response (DDR) enables cancer cells to overcome DNA damage and escape cell death, often leading to therapeutic resistance and unsuccessful outcomes. It is therefore important to develop inhibitors that target DDR proteins to render cancer cells hypersensitive to DNA damage. Here, we investigated the applicability of PFI-3, a recently developed bromodomain inhibitor specifically targeting the SWI/SNF chromatin remodeler that functions to promote DSB repair, in cancer treatment. We verified that PFI-3 effectively blocks chromatin binding of its target bromodomains and dissociates the corresponding SWI/SNF proteins from chromatin. We then found that, while having little toxicity as a single agent, PFI-3 synergistically sensitizes several human cancer cell lines to DNA damage induced by chemotherapeutic drugs such as doxorubicin. This PFI-3 activity occurs only for the cancer cells that require SWI/SNF for DNA repair. Our mechanism studies show that PFI-3 exerts the DNA damage-sensitizing effect by directly blocking SWI/SNF's chromatin binding, which leads to defects in DSB repair and aberrations in damage checkpoints, eventually resulting in increase of cell death primarily via necrosis and senescence. This work therefore demonstrates the activity of PFI-3 to sensitize cancer cells to DNA damage and its mechanism of action via SWI/SNF targeting, providing an experimental rationale for developing PFI-3 as a sensitizing agent in cancer chemotherapy. IMPLICATIONS: This study, revealing the activity of PFI-3 to sensitize cancer cells to chemotherapeutic drugs, provides an experimental rationale for developing this bromodomain inhibitor as a sensitizing agent in cancer chemotherapy.
Collapse
Affiliation(s)
- Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Da-Yeon Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - You-Son Hwang
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of South Korea.
| |
Collapse
|
13
|
Park SG, Lee D, Seo HR, Lee SA, Kwon J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci Rep 2020; 10:16330. [PMID: 33004947 PMCID: PMC7529788 DOI: 10.1038/s41598-020-73500-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Bromodomain (BRD), a protein module that recognizes acetylated lysine residues on histones and other proteins, has recently emerged as a promising therapeutic target for human diseases such as cancer. While most of the studies have been focused on inhibitors against BRDs of the bromo- and extra-terminal domain (BET) family proteins, non-BET family BRD inhibitors remain largely unexplored. Here, we investigated a potential anticancer activity of the recently developed non-BET family BRD inhibitor NVS-CECR2-1 that targets the cat eye syndrome chromosome region, candidate 2 (CECR2). We show that NVS-CECR2-1 inhibits chromatin binding of CECR2 BRD and displaces CECR2 from chromatin within cells. NVS-CECR2-1 exhibits cytotoxic activity against various human cancer cells, killing SW48 colon cancer cells in particular with a submicromolar half maximum inhibition value mainly by inducing apoptosis. The sensitivity of the cancer cells to NVS-CECR2-1 is reduced by CECR2 depletion, suggesting that NVS-CECR2-1 exerts its activity by targeting CECR2. Interestingly, our data show that NVS-CECR2-1 also kills cancer cells by CECR2-independent mechanism. This study reports for the first time the cancer cell cytotoxic activity for NVS-CECR2-1 and provides a possibility of this BRD inhibitor to be developed as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Seul Gi Park
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
14
|
Elliott J, Norton KA, Niri FH, McDermid HE. Reported DNA repair protein CECR2, which is associated with neural tube defects in mice, is not required for double-strand break repair in primary neurospheres. DNA Repair (Amst) 2020; 94:102876. [PMID: 32570002 DOI: 10.1016/j.dnarep.2020.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Justin Elliott
- Department of Biological Sciences, CW 405 Biological Sciences Building, 11455 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Kacie A Norton
- Department of Biological Sciences, CW 405 Biological Sciences Building, 11455 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Farshad H Niri
- Department of Biological Sciences, CW 405 Biological Sciences Building, 11455 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Heather E McDermid
- Department of Biological Sciences, CW 405 Biological Sciences Building, 11455 Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
15
|
Lucas SCC, Atkinson SJ, Bamborough P, Barnett H, Chung CW, Gordon L, Mitchell DJ, Phillipou A, Prinjha RK, Sheppard RJ, Tomkinson NCO, Watson RJ, Demont EH. Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. J Med Chem 2020; 63:5212-5241. [DOI: 10.1021/acs.jmedchem.0c00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simon C. C. Lucas
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Nicholas C. O. Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | |
Collapse
|
16
|
Phillipou AN, Lay CS, Carver CE, Messenger C, Evans JP, Lewis AJ, Gordon LJ, Mahmood M, Greenhough LA, Sammon D, Cheng AT, Chakraborty S, Jones EJ, Lucas SCC, Gatfield KM, Brierley DJ, Craggs PD. Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions. SLAS DISCOVERY 2019; 25:163-175. [PMID: 31875412 DOI: 10.1177/2472555219896278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.
Collapse
Affiliation(s)
- Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charles S Lay
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Antonia J Lewis
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Luke A Greenhough
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Douglas Sammon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Aaron T Cheng
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Syandan Chakraborty
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma J Jones
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Simon C C Lucas
- Epigenetics Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - David J Brierley
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| |
Collapse
|
17
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
18
|
Penney ME, Parfrey PS, Savas S, Yilmaz YE. A genome-wide association study identifies single nucleotide polymorphisms associated with time-to-metastasis in colorectal cancer. BMC Cancer 2019; 19:133. [PMID: 30738427 PMCID: PMC6368959 DOI: 10.1186/s12885-019-5346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Differentiating between cancer patients who will experience metastasis within a short time and who will be long-term survivors without metastasis is a critical aim in healthcare. The microsatellite instability (MSI)-high tumor phenotype is such a differentiator in colorectal cancer, as patients with these tumors are unlikely to experience metastasis. Our aim in this study was to determine if germline genetic variations could further differentiate colorectal cancer patients based on the long-term risk and timing of metastasis. Methods The patient cohort consisted of 379 stage I-III Caucasian colorectal cancer patients with microsatellite stable or MSI-low tumors. We performed univariable analysis on 810,622 common single nucleotide polymorphisms (SNPs) under different genetic models. Depending on the long-term metastasis-free survival probability estimates, we applied a mixture cure model, Cox proportional hazards regression model, or log-rank test. For SNPs reaching Bonferroni-corrected significance (p < 6.2 × 10− 8) having valid genetic models, multivariable analysis adjusting for significant baseline characteristics was conducted. Results After adjusting for significant baseline characteristics, specific genotypes of ten polymorphisms were significantly associated with time-to-metastasis. These polymorphisms are three intergenic SNPs, rs5749032 (p = 1.28 × 10− 10), rs2327990 (p = 9.59 × 10− 10), rs1145724 (p = 3 × 10− 8), and seven SNPs within the non-coding sequences of three genes: FHIT (p = 2.59 × 10− 9), EPHB1 (p = 8.23 × 10− 9), and MIR7515 (p = 4.87 × 10− 8). Conclusions Our results suggest novel associations of specific genotypes of SNPs with early metastasis in Caucasian colorectal cancer patients. These associations, once replicated in other patient cohorts, could assist in the development of personalized treatment strategies for colorectal cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5346-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle E Penney
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Patrick S Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.,Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Yildiz E Yilmaz
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada. .,Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada. .,Department of Mathematics and Statistics, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada.
| |
Collapse
|
19
|
Chiu LY, Gong F, Miller KM. Bromodomain proteins: repairing DNA damage within chromatin. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0286. [PMID: 28847823 DOI: 10.1098/rstb.2016.0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Genome surveillance and repair, termed the DNA damage response (DDR), functions within chromatin. Chromatin-based DDR mechanisms sustain genome and epigenome integrity, defects that can disrupt cellular homeostasis and contribute to human diseases. An important chromatin DDR pathway is acetylation signalling which is controlled by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, which regulate acetylated lysines within proteins. Acetylated proteins, including histones, can modulate chromatin structure and provide molecular signals that are bound by acetyl-lysine binders, including bromodomain (BRD) proteins. Acetylation signalling regulates several DDR pathways, as exemplified by the preponderance of HATs, HDACs and BRD proteins that localize at DNA breaks to modify chromatin for lesion repair. Here, we explore the involvement of acetylation signalling in the DDR, focusing on the involvement of BRD proteins in promoting chromatin remodelling to repair DNA double-strand breaks. BRD proteins have widespread DDR functions including chromatin remodelling, chromatin modification and transcriptional regulation. We discuss mechanistically how BRD proteins read acetylation signals within chromatin to trigger DDR and chromatin activities to facilitate genome-epigenome maintenance. Thus, DDR pathways involving BRD proteins represent key participants in pathways that preserve genome-epigenome integrity to safeguard normal genome and cellular functions.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| |
Collapse
|
20
|
Wang Q, Li Y, Xu J, Wang Y, Leung ELH, Liu L, Yao X. Selective inhibition mechanism of RVX-208 to the second bromodomain of bromo and extraterminal proteins: insight from microsecond molecular dynamics simulations. Sci Rep 2017; 7:8857. [PMID: 28821780 PMCID: PMC5562737 DOI: 10.1038/s41598-017-08909-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
RVX-208 is a recently reported inhibitor of bromo and extraterminal (BET) family proteins (including BRD2-4 and BRDT) with selectivity for the second bromodomain (BD2), currently in phase III clinical trials. Despite of its promising antitumor activity, due to the conserved folds of the first and second bromodomains (BD1 and BD2), the detailed selectivity mechanism of RVX-208 towards BD2 over BD1 is still unknown. To elucidate selective inhibition mechanism of RVX-208 to BD2, microsecond molecular dynamics simulations were performed in this study for BRD2-BD1, BRD2-BD2 and BRD4-BD1 with and without RVX-208, respectively. Binding free energy calculations show that there exists strongest interaction between RVX-208 and BRD2-BD2. Leu383 and Asn429 are two most important residues of BRD2-BD2 for binding to RVX-208. Structural network analysis reveals that RVX-208 can shorten the communication path of ZA and BC loops in BRD2-BD2 pocket, making pocket more suitable to accommodate RVX-208. Additionally, different behaviors of His433 (Asp160 in BRD2-BD1) and Val435 (Ile162 in BRD2-BD1) in BRD2-BD2 are key factors responsible for selective binding of RVX-208 to BRD2-BD2. The proposed selective inhibition mechanism of RVX-208 to BRD2-BD2 can be helpful for rational design of novel selective inhibitors of the second bromodomain of BET family proteins.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
21
|
Crawford TD, Audia JE, Bellon S, Burdick DJ, Bommi-Reddy A, Côté A, Cummings RT, Duplessis M, Flynn EM, Hewitt M, Huang HR, Jayaram H, Jiang Y, Joshi S, Kiefer JR, Murray J, Nasveschuk CG, Neiss A, Pardo E, Romero FA, Sandy P, Sims RJ, Tang Y, Taylor AM, Tsui V, Wang J, Wang S, Wang Y, Xu Z, Zawadzke L, Zhu X, Albrecht BK, Magnuson SR, Cochran AG. GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2). ACS Med Chem Lett 2017; 8:737-741. [PMID: 28740608 DOI: 10.1021/acsmedchemlett.7b00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.
Collapse
Affiliation(s)
- Terry D. Crawford
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James E. Audia
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steve Bellon
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Daniel J. Burdick
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Archana Bommi-Reddy
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Alexandre Côté
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Richard T. Cummings
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Martin Duplessis
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - E. Megan Flynn
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael Hewitt
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Hon-Ren Huang
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Hariharan Jayaram
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Ying Jiang
- Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Shivangi Joshi
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - James R. Kiefer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy Murray
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher G. Nasveschuk
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Arianne Neiss
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Eneida Pardo
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - F. Anthony Romero
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Sandy
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Robert J. Sims
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Yong Tang
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Alexander M. Taylor
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Vickie Tsui
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jian Wang
- Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Shumei Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yongyun Wang
- Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Zhaowu Xu
- Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Laura Zawadzke
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Xiaoqin Zhu
- Wuxi Apptec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Brian K. Albrecht
- Constellation Pharmaceuticals, 215
First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven R. Magnuson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrea G. Cochran
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Leduc RY, Singh P, McDermid HE. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects. Birth Defects Res 2017; 109:140-152. [DOI: 10.1002/bdra.23554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Renee Y.M. Leduc
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| | - Parmveer Singh
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| | - Heather E. McDermid
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
23
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|
24
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Gong F, Chiu LY, Cox B, Aymard F, Clouaire T, Leung JW, Cammarata M, Perez M, Agarwal P, Brodbelt JS, Legube G, Miller KM. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev 2015; 29:197-211. [PMID: 25593309 PMCID: PMC4298138 DOI: 10.1101/gad.252189.114] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gong et al. report that more than one-third of human bromodomain (BRD)-containing proteins change localization in response to DNA damage. They identified ZMYND8 as a novel DNA damage response factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin to repress transcription and promote repair by homologous recombination. How chromatin shapes pathways that promote genome–epigenome integrity in response to DNA damage is an issue of crucial importance. We report that human bromodomain (BRD)-containing proteins, the primary “readers” of acetylated chromatin, are vital for the DNA damage response (DDR). We discovered that more than one-third of all human BRD proteins change localization in response to DNA damage. We identified ZMYND8 (zinc finger and MYND [myeloid, Nervy, and DEAF-1] domain containing 8) as a novel DDR factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin. Our data define a transcription-associated DDR pathway mediated by ZMYND8 and the NuRD complex that targets DNA damage, including when it occurs within transcriptionally active chromatin, to repress transcription and promote repair by homologous recombination. Thus, our data identify human BRD proteins as key chromatin modulators of the DDR and provide novel insights into how DNA damage within actively transcribed regions requires chromatin-binding proteins to orchestrate the appropriate response in concordance with the damage-associated chromatin context.
Collapse
Affiliation(s)
- Fade Gong
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Li-Ya Chiu
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ben Cox
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - François Aymard
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Thomas Clouaire
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Justin W Leung
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Cammarata
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mercedes Perez
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Poonam Agarwal
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse/Université Paul Sabatier, 31062 Toulouse, France. Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre National de la Recherche Scientifique (CNRS), 31062 Toulouse, France
| | - Kyle M Miller
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
26
|
Kwon SJ, Lee SK, Na J, Lee SA, Lee HS, Park JH, Chung JK, Youn H, Kwon J. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo. Mol Cancer Ther 2014; 14:597-607. [PMID: 25504753 DOI: 10.1158/1535-7163.mct-14-0372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy treats cancer by inducing DNA double-strand breaks (DSB) in tumor cells using ionizing radiation. However, DNA repair in tumor cells often leads to radioresistance and unsuccessful outcome. Inhibition of DNA repair by targeting repair proteins can increase radiosensitivity of tumor cells. The BRG1 chromatin remodeling enzyme assists DSB repair by stimulating γ-H2AX formation and BRG1 binding to acetylated histones at DSBs via bromodomain (BRD) is critical for this activity. Here, we show that ectopic expression of BRG1-BRD inhibited γ-H2AX and DSB repair after irradiation and increased the radiosensitivity in various human cancer cells, including HT29 colon cancer. Dimerization of BRG1-BRD, increasing its chromatin binding affinity, aggravated the defects in γ-H2AX and DSB repair and further enhanced the radiosensitivity. While little affecting the upstream ATM activation, BRG1-BRD in irradiated HT29 cells inhibited the recruitment of 53BP1 to damaged chromatin, the downstream event of γ-H2AX, and compromised the G2-M checkpoint and increased apoptosis. Importantly, in a xenograft mouse model, BRG1-BRD increased the radiosensitivity of HT29 tumors, which was further enhanced by dimerization. These data suggest that BRG1-BRD radiosensitizes tumor cells by a dominant negative activity against BRG1, which disrupts γ-H2AX and its downstream 53BP1 pathways, leading to inefficient DNA repair, G2-M checkpoint defect, and increased apoptosis. This work therefore identifies BRG1-BRD as a novel tumor radiosensitizer and its action mechanism, providing the first example of chromatin remodeler as a target for improving cancer radiotherapy.
Collapse
Affiliation(s)
- Su-Jung Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Seul-Ki Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Juri Na
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Han-Sae Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ji-Hye Park
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Cancer Imaging Center, Seoul National University Hospital, Jongno-Gu, Seoul, Korea.
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
27
|
Selective Inhibition of Acetyl-Lysine Effector Domains of the Bromodomain Family in Oncology. NUCLEAR SIGNALING PATHWAYS AND TARGETING TRANSCRIPTION IN CANCER 2014. [DOI: 10.1007/978-1-4614-8039-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Pellagatti A, Fernandez-Mercado M, Di Genua C, Larrayoz MJ, Killick S, Dolatshad H, Burns A, Calasanz MJ, Schuh A, Boultwood J. Whole-exome sequencing in del(5q) myelodysplastic syndromes in transformation to acute myeloid leukemia. Leukemia 2013; 28:1148-51. [PMID: 24365791 DOI: 10.1038/leu.2013.381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A Pellagatti
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - C Di Genua
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M J Larrayoz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - S Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - H Dolatshad
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Burns
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - M J Calasanz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - A Schuh
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Guo W, Chen W, Yu W, Huang W, Deng W. Small interfering RNA-based molecular therapy of cancers. CHINESE JOURNAL OF CANCER 2013; 32:488-93. [PMID: 23327796 PMCID: PMC3845562 DOI: 10.5732/cjc.012.10280] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) has become a gold standard for validating gene function in basic life science research and provides a promising therapeutic modality for cancer and other diseases. This mini-review focuses on the potential of small interfering RNAs (siRNAs) in anticancer treatment, including the establishment and screening of cancer-associated siRNA libraries and their applications in anticancer drug target discovery and cancer therapy. This article also describes the current delivery approaches of siRNAs using lipids, polymers, and, in particular, gold nanoparticles to induce significant gene silencing and tumor growth regression.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Oncology in South China; Research Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | |
Collapse
|