1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Zadegan SB, Kim W, Abbas HMK, Kim S, Krishnan HB, Hewezi T. Differential symbiotic compatibilities between rhizobium strains and cultivated and wild soybeans revealed by anatomical and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1435632. [PMID: 39290740 PMCID: PMC11405202 DOI: 10.3389/fpls.2024.1435632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Various species of rhizobium establish compatible symbiotic relationships with soybean (Glycine max) leading to the formation of nitrogen-fixing nodules in roots. The formation of functional nodules is mediated through complex developmental and transcriptional reprogramming that involves the activity of thousands of plant genes. However, host transcriptome that differentiate between functional or non-functional nodules remain largely unexplored. In this study, we investigated differential compatibilities between rhizobium strains (Bradyrhizobium diazoefficiens USDA110 Bradyrhizobium sp. strain LVM105) and cultivated and wild soybeans. The nodulation assays revealed that both USDA110 and LVM105 strains effectively nodulate G. soja but only USDA110 can form symbiotic relationships with Williams 82. LVM105 formed pseudonodules on Williams 82 that consist of a central nodule-like mass that are devoid of any rhizobia. RNA-seq data revealed that USDA110 and LVM105 induce distinct transcriptome programing in functional mature nodules formed on G. soja roots, where genes involved in nucleosome assembly, DNA replication, regulation of cell cycle, and defense responses play key roles. Transcriptome comparison also suggested that activation of genes associated with cell wall biogenesis and organization and defense responses together with downregulation of genes involved in the biosynthesis of isoprenoids and antioxidant stress are associated with the formation of non-functional nodules on Williams 82 roots. Moreover, our analysis implies that increased activity of genes involved in oxygen binding, amino acid transport, and nitrate transport differentiates between fully-developed nodules in cultivated versus wild soybeans.
Collapse
Affiliation(s)
- Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Wonseok Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | | | - Sunhyung Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, United States
- Plant Genetics Research, The United States Department of Agriculture (USDA) Agricultural Research Service, Columbia, MO, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Bacterial Endophytes from Legumes Native to Arid Environments Are Promising Tools to Improve Mesorhizobium-Chickpea Symbiosis under Salinity. BIOLOGY 2024; 13:96. [PMID: 38392314 PMCID: PMC10886315 DOI: 10.3390/biology13020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Symbiotic nitrogen fixation is a major contributor of N in agricultural ecosystems, but the establishment of legume-rhizobium symbiosis is highly affected by soil salinity. Our interest is focused on the use of non-rhizobial endophytes to assist the symbiosis between chickpea and its microsymbiont under salinity to avoid loss of production and fertility. Our aims were (1) to investigate the impact of salinity on both symbiotic partners; including on early events of the Mesorhizobium-chickpea symbiosis, and (2) to evaluate the potential of four non-rhizobial endophytes isolated from legumes native to arid regions (Phyllobacterium salinisoli, P. ifriqiyense, Xanthomonas translucens, and Cupriavidus respiraculi) to promote chickpea growth and nodulation under salinity. Our results show a significant reduction in chickpea seed germination rate and in the microsymbiont Mesorhizobium ciceri LMS-1 growth under different levels of salinity. The composition of phenolic compounds in chickpea root exudates significantly changed when the plants were subjected to salinity, which in turn affected the nod genes expression in LMS-1. Furthermore, the LMS-1 response to root exudate stimuli was suppressed by the presence of salinity (250 mM NaCl). On the contrary, a significant upregulation of exoY and otsA genes, which are involved in exopolysaccharide and trehalose biosynthesis, respectively, was registered in salt-stressed LMS-1 cells. In addition, chickpea co-inoculation with LMS-1 along with the consortium containing two non-rhizobial bacterial endophytes, P. salinisoli and X. translucens, resulted in significant improvement of the chickpea growth and the symbiotic performance of LMS-1 under salinity. These results indicate that this non-rhizobial endophytic consortium may be an appropriate ecological and safe tool to improve chickpea growth and its adaptation to salt-degraded soils.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Fan K, Wang Z, Sze CC, Niu Y, Wong FL, Li MW, Lam HM. MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). THE NEW PHYTOLOGIST 2023; 240:1034-1051. [PMID: 37653681 DOI: 10.1111/nph.19222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant biological processes, including soybean nodulation. One miRNA, miR4407, was identified in soybean roots and nodules. However, the function of miR4407 in soybean is still unknown. MiR4407, unique to soybean, positively regulates lateral root emergence and root structures and represses a root-specific ISOPENTENYLTRANSFERASE (GmIPT3). By altering the expression of miR4407 and GmIPT3, we investigated the role of miR4407 in lateral root and nodule development. Both miR4407 and GmIPT3 are expressed in the inner root cortex and nodule primordia. Upon rhizobial inoculation, miR4407 was downregulated while GmIPT3 was upregulated. Overexpressing miR4407 reduced the number of nodules in transgenic soybean hairy roots while overexpressing the wild-type GmIPT3 or a miR4407-resistant GmIPT3 mutant (mGmIPT3) significantly increased the nodule number. The mechanism of miR4407 and GmIPT3 functions was also linked to autoregulation of nodulation (AON), where miR4407 overexpression repressed miR172c and activated its target, GmNNC1, turning on AON. Exogenous CK mimicked the effects of GmIPT3 overexpression on miR172c, supporting the notion that GmIPT3 regulates nodulation by enhancing root-derived CK. Overall, our data revealed a new miRNA-mediated regulatory mechanism of nodulation in soybean. MiR4407 showed a dual role in lateral root and nodule development.
Collapse
Affiliation(s)
- Kejing Fan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongchao Niu
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Liu D, Smagghe G, Liu TX. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel) 2023; 9:jof9050575. [PMID: 37233286 DOI: 10.3390/jof9050575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Ali M, Miao L, Soudy FA, Darwish DBE, Alrdahe SS, Alshehri D, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells 2022; 11:cells11172622. [PMID: 36078031 PMCID: PMC9454526 DOI: 10.3390/cells11172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Desert Research Center, Department of Genetic Resources, Cairo 11753, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fathia A. Soudy
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| |
Collapse
|
7
|
Kabange NR, Lee SM, Shin D, Lee JY, Kwon Y, Kang JW, Cha JK, Park H, Alibu S, Lee JH. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life (Basel) 2022; 12:1272. [PMID: 36013451 PMCID: PMC9410007 DOI: 10.3390/life12081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen (N) is a gas and the fifth most abundant element naturally found in the atmosphere. N's role in agriculture and plant metabolism has been widely investigated for decades, and extensive information regarding this subject is available. However, the advent of sequencing technology and the advances in plant biotechnology, coupled with the growing interest in functional genomics-related studies and the various environmental challenges, have paved novel paths to rediscovering the fundamentals of N and its dynamics in physiological and biological processes, as well as biochemical reactions under both normal and stress conditions. This work provides a comprehensive review on multiple facets of N and N-containing compounds in plants disseminated in the literature to better appreciate N in its multiple dimensions. Here, some of the ancient but fundamental aspects of N are revived and the advances in our understanding of N in the metabolism of plants is portrayed. It is established that N is indispensable for achieving high plant productivity and fitness. However, the use of N-rich fertilizers in relatively higher amounts negatively affects the environment. Therefore, a paradigm shift is important to shape to the future use of N-rich fertilizers in crop production and their contribution to the current global greenhouse gases (GHGs) budget would help tackle current global environmental challenges toward a sustainable agriculture.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ji-Yoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Simon Alibu
- National Crops Resources Research Institute (NaCRRI), NARO, Entebbe 7084, Uganda
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| |
Collapse
|
8
|
Wiggins G, Thomas J, Rahmatallah Y, Deen C, Haynes A, Degon Z, Glazko G, Mukherjee A. Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Sci Rep 2022; 12:8827. [PMID: 35614083 PMCID: PMC9132972 DOI: 10.1038/s41598-022-12285-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Non-legume plants such as rice and maize can form beneficial associations with plant growth-promoting bacteria (PGPB) such as Herbaspirillum seropedicae and Azospirillum brasilense. Several studies have shown that these PGPB promote plant growth via multiple mechanisms. Our current understanding of the molecular aspects and signaling between plants like rice and PGPB like Herbaspirillum seropedicae is limited. In this study, we used an experimental system where H. seropedicae could colonize the plant roots and promote growth in wild-type rice. Using this experimental setup, we identified 1688 differentially expressed genes (DEGs) in rice roots, 1 day post-inoculation (dpi) with H. seropedicae. Several of these DEGs encode proteins involved in the flavonoid biosynthetic pathway, defense, hormone signaling pathways, and nitrate and sugar transport. We validated the expression pattern of some genes via RT-PCR. Next, we compared the DEGs identified in this study to those we previously identified in rice roots during associations with another PGPB, Azospirillum brasilense. We identified 628 genes that were differentially expressed during both associations. The expression pattern of these genes suggests that some of these are likely to play a significant role(s) during associations with both H. seropedicae and A. brasilense and are excellent targets for future studies.
Collapse
Affiliation(s)
- Grant Wiggins
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Connor Deen
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Allee Haynes
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Zachariah Degon
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
9
|
Hrbáčková M, Luptovčiak I, Hlaváčková K, Dvořák P, Tichá M, Šamajová O, Novák D, Bednarz H, Niehaus K, Ovečka M, Šamaj J. Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:767-784. [PMID: 33112469 PMCID: PMC8051612 DOI: 10.1111/pbi.13503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 05/03/2023]
Abstract
Nitrogen-fixing rhizobia and legumes have developed complex mutualistic mechanism that allows to convert atmospheric nitrogen into ammonia. Signalling by mitogen-activated protein kinases (MAPKs) seems to be involved in this symbiotic interaction. Previously, we reported that stress-induced MAPK (SIMK) shows predominantly nuclear localization in alfalfa root epidermal cells. Nevertheless, SIMK is activated and relocalized to the tips of growing root hairs during their development. SIMK kinase (SIMKK) is a well-known upstream activator of SIMK. Here, we characterized production parameters of transgenic alfalfa plants with genetically manipulated SIMK after infection with Sinorhizobium meliloti. SIMKK RNAi lines, causing strong downregulation of both SIMKK and SIMK, showed reduced root hair growth and lower capacity to form infection threads and nodules. In contrast, constitutive overexpression of GFP-tagged SIMK promoted root hair growth as well as infection thread and nodule clustering. Moreover, SIMKK and SIMK downregulation led to decrease, while overexpression of GFP-tagged SIMK led to increase of biomass in above-ground part of plants. These data suggest that genetic manipulations causing downregulation or overexpression of SIMK affect root hair, nodule and shoot formation patterns in alfalfa, and point to the new biotechnological potential of this MAPK.
Collapse
Affiliation(s)
- Miroslava Hrbáčková
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Ivan Luptovčiak
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Kateřina Hlaváčková
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Petr Dvořák
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Michaela Tichá
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Olga Šamajová
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Dominik Novák
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Hanna Bednarz
- Faculty of BiologyCenter for Biotechnology – CeBiTecUniversität BielefeldBielefeldGermany
| | - Karsten Niehaus
- Faculty of BiologyCenter for Biotechnology – CeBiTecUniversität BielefeldBielefeldGermany
| | - Miroslav Ovečka
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Jozef Šamaj
- Faculty of ScienceDepartment of Cell BiologyCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| |
Collapse
|
10
|
Xu S, Song S, Dong X, Wang X, Wu J, Ren Z, Wu X, Lu J, Yuan H, Wu X, Li X, Wang Z. GmbZIP1 negatively regulates ABA-induced inhibition of nodulation by targeting GmENOD40-1 in soybean. BMC PLANT BIOLOGY 2021; 21:35. [PMID: 33421994 PMCID: PMC7796624 DOI: 10.1186/s12870-020-02810-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays an important role in plant growth and adaptation through the ABA signaling pathway. The ABA-responsive element binding (AREB/ABF) family transcriptional factors are central regulators that integrate ABA signaling with various signaling pathways. It has long been known that ABA inhibits rhizobial infection and nodule formation in legumes, but the underlying molecular mechanisms remain elusive. RESULTS Here, we show that nodulation is very sensitive to ABA and exogenous ABA dramatically inhibits rhizobial infection and nodule formation in soybean. In addition, we proved that GmbZIP1, an AREB/ABF transcription factor, is a major regulator in both nodulation and plant response to ABA in soybean. GmbZIP1 was specifically expressed during nodule formation and development. Overexpression of GmbZIP1 resulted in reduced rhizobial infection and decreased nodule number. Furthermore, GmbZIP1 is responsive to ABA, and ectopic overexpression of GmbZIP1 increased sensitivity of Arabidopsis plants to ABA during seed germination and postgerminative growth, and conferred enhanced drought tolerance of plants. Remarkably, we found that GmbZIP1 directly binds to the promoter of GmENOD40-1, a marker gene for nodule formation, to repress its expression. CONCLUSION Our results identified GmbZIP1 as a node regulator that integrates ABA signaling with nodulation signaling to negatively regulate nodule formation.
Collapse
Affiliation(s)
- Shimin Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Shanshan Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xiaoxu Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jun Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Huifang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinying Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China.
| |
Collapse
|
11
|
Ali M, Miao L, Hou Q, Darwish DB, Alrdahe SS, Ali A, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage ( Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:783269. [PMID: 35003167 PMCID: PMC8733304 DOI: 10.3389/fpls.2021.783269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/24/2021] [Indexed: 05/17/2023]
Abstract
In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qiuqiang Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Doaa B. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Ali
- Department of Plant Agricultural, Faculty of Agriculture Science, Al-Azhar University, Assiut, Egypt
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, United States
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaobo Wang,
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Jian Zhao, ; orcid.org/0000-0002-4416-7334
| |
Collapse
|
12
|
Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 2020; 44:107614. [PMID: 32858117 DOI: 10.1016/j.biotechadv.2020.107614] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 10/25/2022]
Abstract
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Collapse
Affiliation(s)
- Jakub Papik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Magdalena Folkmanova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Marketa Polivkova-Majorova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
13
|
Mendoza-Suárez MA, Geddes BA, Sánchez-Cañizares C, Ramírez-González RH, Kirchhelle C, Jorrin B, Poole PS. Optimizing Rhizobium-legume symbioses by simultaneous measurement of rhizobial competitiveness and N 2 fixation in nodules. Proc Natl Acad Sci U S A 2020; 117:9822-9831. [PMID: 32317381 PMCID: PMC7211974 DOI: 10.1073/pnas.1921225117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Legumes tend to be nodulated by competitive rhizobia that do not maximize nitrogen (N2) fixation, resulting in suboptimal yields. Rhizobial nodulation competitiveness and effectiveness at N2 fixation are independent traits, making their measurement extremely time-consuming with low experimental throughput. To transform the experimental assessment of rhizobial competitiveness and effectiveness, we have used synthetic biology to develop reporter plasmids that allow simultaneous high-throughput measurement of N2 fixation in individual nodules using green fluorescent protein (GFP) and barcode strain identification (Plasmid ID) through next generation sequencing (NGS). In a proof-of-concept experiment using this technology in an agricultural soil, we simultaneously monitored 84 different Rhizobium leguminosarum strains, identifying a supercompetitive and highly effective rhizobial symbiont for peas. We also observed a remarkable frequency of nodule coinfection by rhizobia, with mixed occupancy identified in ∼20% of nodules, containing up to six different strains. Critically, this process can be adapted to multiple Rhizobium-legume symbioses, soil types, and environmental conditions to permit easy identification of optimal rhizobial inoculants for field testing to maximize agricultural yield.
Collapse
Affiliation(s)
| | - Barney A Geddes
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | | | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom;
| |
Collapse
|
14
|
Fenta BA, Beebe SE, Kunert KJ. Role of fixing nitrogen in common bean growth under water deficit conditions. Food Energy Secur 2020. [DOI: 10.1002/fes3.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Berhanu Amsalu Fenta
- Ethiopian Institute of Agricultural Research Melkassa Agricultural Research Centre Adama Ethiopia
| | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT) Cali Colombia
| | - Karl J. Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
15
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
16
|
Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms 2019; 7:microorganisms7100392. [PMID: 31557944 PMCID: PMC6843138 DOI: 10.3390/microorganisms7100392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
Bacterial endophytes, a subset of a plant’s microbiota, can facilitate plant growth by a number of different mechanisms. The aims of this study were to assess the diversity and functionality of endophytic bacterial strains from internal root tissues of native legume species grown in two distinct sites in South of Portugal and to evaluate their ability to promote plant growth. Here, 122 endophytic bacterial isolates were obtained from 12 different native legume species. Most of these bacteria possess at least one of the plant growth-promoting features tested in vitro, with indole acetic acid production being the most common feature among the isolates followed by the production of siderophores and inorganic phosphate solubilization. The results of in planta experiments revealed that co-inoculation of chickpea plants with specific endophytic bacteria along with N2-fixing symbionts significantly improved the total biomass of chickpea plants, in particular when these plants were grown under saline conditions. Altogether, this study revealed that Mediterranean native legume species are a reservoir of plant growth-promoting bacteria, that are also tolerant to salinity and to toxic levels of Mn. Thus, these bacterial endophytes are well adapted to common constraints present in soils of this region which constitutes important factors to consider in the development of bacterial inoculants for stressful conditions in the Mediterranean region.
Collapse
|
17
|
Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Glazko G, Mukherjee A. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PLoS One 2019; 14:e0217309. [PMID: 31120967 PMCID: PMC6532919 DOI: 10.1371/journal.pone.0217309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Major non-legume crops can form beneficial associations with nitrogen-fixing bacteria like Azospirillum brasilense. Our current understanding of the molecular aspects and signaling that occur between important crops like rice and these nitrogen-fixing bacteria is limited. In this study, we used an experimental system where the bacteria could colonize the plant roots and promote plant growth in wild type rice and symbiotic mutants (dmi3 and pollux) in rice. Our data suggest that plant growth promotion and root penetration is not dependent on these genes. We then used this colonization model to identify regulation of gene expression at two different time points during this interaction: at 1day post inoculation (dpi), we identified 1622 differentially expressed genes (DEGs) in rice roots, and at 14dpi, we identified 1995 DEGs. We performed a comprehensive data mining to classify the DEGs into the categories of transcription factors (TFs), protein kinases (PKs), and transporters (TRs). Several of these DEGs encode proteins that are involved in the flavonoid biosynthetic pathway, defense, and hormone signaling pathways. We identified genes that are involved in nitrate and sugar transport and are also implicated to play a role in other plant-microbe interactions. Overall, findings from this study will serve as an excellent resource to characterize the host genetic pathway controlling the interactions between non-legumes and beneficial bacteria which can have long-term implications towards sustainably improving agriculture.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Grant Wiggins
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Qinqing Yang
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Raj Singh
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| |
Collapse
|
18
|
Roy Choudhury S, Johns SM, Pandey S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives. PLANT DIRECT 2019; 3:e00135. [PMID: 31245773 PMCID: PMC6589526 DOI: 10.1002/pld3.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Legumes develop root nodules that harbor endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil-free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones on soybean nodule development under identical growing conditions. Phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) had an overall inhibitory effect and those such as gibberellic acid (GA) or brassinosteroids (BRs) had an overall positive effect on nodule formation. This versatile, inexpensive, scalable, and simple protocol provides several advantages over previously established methods. It is extremely time- and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.
Collapse
Affiliation(s)
| | | | - Sona Pandey
- Donald Danforth Plant Science CenterSt. LouisMissouri
| |
Collapse
|
19
|
Barraza A, Coss-Navarrete EL, Vizuet-de-Rueda JC, Martínez-Aguilar K, Hernández-Chávez JL, Ordaz-Ortiz JJ, Winkler R, Tiessen A, Alvarez-Venegas R. Down-regulation of PvTRX1h increases nodule number and affects auxin, starch, and metabolic fingerprints in the common bean (Phaseolus vulgaris L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:45-58. [PMID: 30080634 DOI: 10.1016/j.plantsci.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The legume-rhizobium symbiotic relationship has been widely studied and characterized. However, little information is available about the role of histone lysine methyltransferases in the legume-rhizobium interaction and in the formation of nitrogen-fixing nodules in the common bean. Thus, this study aimed to gain a better understanding of the epigenetic control of nodulation in the common bean. Specifically, we studied the role of PvTRX1h, a histone lysine methyltransferase coding gene, in nodule development and auxin biosynthesis. Through a reverse genetics approach, we generated common bean composite plants to knock-down PvTRX1h expression. Here we found that the down-regulation of PvTRX1h increased the number of nodules per plant, but reduced the number of colony-forming units recovered from nodules. Genes coding for enzymes involved in the synthesis of the indole-3-acetic acid were up-regulated, as was the concentration of this hormone. In addition, PvTRX1h down-regulation altered starch accumulation as determined by the number of amyloplasts per nodule. Metabolic fingerprinting by direct liquid introduction-electrospray ionization-mass spectrometry (DLI-ESI-MS) revealed that the root nodules were globally affected by PvTRX1h down-regulation. Therefore, PvTRX1h likely acts through chromatin histone modifications that alter the auxin signaling network to determine bacterial colonization, nodule number, starch accumulation, hormone levels, and cell proliferation.
Collapse
Affiliation(s)
- Aarón Barraza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Evelia Lorena Coss-Navarrete
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Juan Carlos Vizuet-de-Rueda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Keren Martínez-Aguilar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - José Luis Hernández-Chávez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - José Juan Ordaz-Ortiz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Guanajuato, Mexico
| | - Robert Winkler
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico
| | - Raúl Alvarez-Venegas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato, C.P. 36824, Mexico.
| |
Collapse
|
20
|
Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 2018; 18:315-326. [PMID: 29511998 PMCID: PMC6463493 DOI: 10.1007/s10142-018-0594-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
Abstract
Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Megan J Bowman
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Andres Vega
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
21
|
Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 2018. [PMID: 29511998 DOI: 10.1007/s10142-10018-10594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Megan J Bowman
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Andres Vega
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
22
|
Teixeira WF, Fagan EB, Soares LH, Soares JN, Reichardt K, Neto DD. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop. FRONTIERS IN PLANT SCIENCE 2018; 9:396. [PMID: 29643860 PMCID: PMC5882785 DOI: 10.3389/fpls.2018.00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 05/03/2023]
Abstract
The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.
Collapse
Affiliation(s)
- Walquíria F. Teixeira
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Evandro B. Fagan
- Department of Agronomy, Centro Universitário de Patos de Minas, Patos de Minas, Brazil
| | - Luis H. Soares
- Department of Agronomy, Centro Universitário de Patos de Minas, Patos de Minas, Brazil
| | - Jérssica N. Soares
- Department of Agronomy, Centro Universitário de Patos de Minas, Patos de Minas, Brazil
| | - Klaus Reichardt
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Durval D. Neto
- Department of Crop Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
23
|
Bastías DA, Alejandra Martínez-Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. PLANT, CELL & ENVIRONMENT 2018; 41:395-405. [PMID: 29194664 DOI: 10.1111/pce.13102] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores.
Collapse
Affiliation(s)
- Daniel A Bastías
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - M Alejandra Martínez-Ghersa
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Jonathan A Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Pedro E Gundel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
24
|
Liu Y, Jiang X, Guan D, Zhou W, Ma M, Zhao B, Cao F, Li L, Li J. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci Rep 2017; 7:10946. [PMID: 28887528 PMCID: PMC5591287 DOI: 10.1038/s41598-017-11372-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.
Collapse
Affiliation(s)
- Yao Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Baisuo Zhao
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
25
|
Nasr Esfahani M, Inoue K, Chu HD, Nguyen KH, Van Ha C, Watanabe Y, Burritt DJ, Herrera-Estrella L, Mochida K, Tran LSP. Comparative transcriptome analysis of nodules of two Mesorhizobium-chickpea associations with differential symbiotic efficiency under phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28628240 DOI: 10.1111/tpj.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which enable nodules to respond to low-Pi availability. Thus, to elucidate these mechanisms in chickpea nodules at molecular level, we used an RNA sequencing approach to investigate transcriptomes of the nodules in Mesorhizobium mediterraneum SWRI9-(MmSWRI9)-chickpea and M. ciceri CP-31-(McCP-31)-chickpea associations under Pi-sufficient and Pi-deficient conditions, of which the McCP-31-chickpea association has a better SNF capacity than the MmSWRI9-chickpea association during Pi starvation. Our investigation revealed that more genes showed altered expression patterns in MmSWRI9-induced nodules than in McCP-31-induced nodules (540 vs. 225) under Pi deficiency, suggesting that the Pi-starvation-more-sensitive MmSWRI9-induced nodules required expression change in a larger number of genes to cope with low-Pi stress than the Pi-starvation-less-sensitive McCP-31-induced nodules. The functional classification of differentially expressed genes (DEGs) was examined to gain an understanding of how chickpea nodules respond to Pi starvation, caused by soil Pi deficiency. As a result, more DEGs involved in nodulation, detoxification, nutrient/ion transport, transcriptional factors, key metabolic pathways, Pi remobilization and signalling were found in Pi-starved MmSWRI9-induced nodules than in Pi-starved McCP-31-induced nodules. Our findings have enabled the identification of molecular processes that play important roles in the acclimation of nodules to Pi deficiency, ultimately leading to the development of Pi-efficient chickpea symbiotic associations suitable for Pi-deficient soils.
Collapse
Affiliation(s)
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong, North Tu Liem, Hanoi, Vietnam
| | - Kien Huu Nguyen
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Chien Van Ha
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong, North Tu Liem, Hanoi, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
26
|
Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, Zhang Z. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula. Front Microbiol 2017; 8:973. [PMID: 28611764 PMCID: PMC5447765 DOI: 10.3389/fmicb.2017.00973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011) and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2), pathogenesis-related protein 10 (PR10), and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Bo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
27
|
Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:187-213. [PMID: 28712497 DOI: 10.1016/bs.pmbts.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen-fixing rhizobia have established a symbiotic relationship with the legume family through more than 60 million years of evolution. Hundreds of legume host genes are involved in the SNF (symbiotic nitrogen fixation) process, such as recognition of the bacterial partners, nodulation signaling and nodule development, maintenance of highly efficient nitrogen fixation within nodules, regulation of nodule numbers, and nodule senescence. However, investigations of SNF-related gene functions and dissecting molecular mechanisms of the complicated signaling crosstalk on a genomic scale were significantly restricted by insufficient mutant resources of several representative model legumes. Targeted genome-editing technologies, including ZFNs, TALENs, and CRISPR-Cas systems, have been developed in recent years and rapidly revolutionized biological research in many fields. These technologies were also applied to legume plants, and significant progress has been made in the last several years. Here, we summarize the applications of these genome-editing technologies, especially CRISPR-Cas9, toward the study of SNF in legumes, which should greatly advance our understanding of the basic mechanisms underpinning the legume-rhizobia interactions and guide the engineering of the SNF pathway into nonlegume crops to reduce the dependence on the use of nitrogen fertilizers for sustainable development of modern agriculture.
Collapse
|
28
|
Ryu H, Laffont C, Frugier F, Hwang I. MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula. Mol Cells 2017; 40:17-23. [PMID: 28152300 PMCID: PMC5303885 DOI: 10.14348/molcells.2017.2211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Biology, Chungbuk National University, Cheongju 28644,
Korea
| | - Carole Laffont
- Institute of Plant Sciences-Paris-Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d’Evry, Université Paris-Saclay, Bâtiment 630, 91190 Gif-sur-Yvette,
France
| | - Florian Frugier
- Institute of Plant Sciences-Paris-Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d’Evry, Université Paris-Saclay, Bâtiment 630, 91190 Gif-sur-Yvette,
France
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
29
|
Hiltenbrand R, Thomas J, McCarthy H, Dykema KJ, Spurr A, Newhart H, Winn ME, Mukherjee A. A Developmental and Molecular View of Formation of Auxin-Induced Nodule-Like Structures in Land Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1692. [PMID: 27891144 PMCID: PMC5104908 DOI: 10.3389/fpls.2016.01692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/27/2016] [Indexed: 05/21/2023]
Abstract
Several studies have shown that plant hormones play important roles during legume-rhizobia symbiosis. For instance, auxins induce the formation of nodule-like structures (NLSs) on legume roots in the absence of rhizobia. Furthermore, these NLS can be colonized by nitrogen-fixing bacteria, which favor nitrogen fixation compared to regular roots and subsequently increase plant yield. Interestingly, auxin also induces similar NLS in cereal roots. While several genetic studies have identified plant genes controlling NLS formation in legumes, no studies have investigated the genes involved in NLS formation in cereals. In this study, first we established an efficient experimental system to induce NLS in rice roots, using auxin, 2,4-D, consistently at a high frequency (>90%). We were able to induce NLS at a high frequency in Medicago truncatula under similar conditions. NLS were characterized by a broad base, a diffuse meristem, and increased cell differentiation in the vasculature. Interestingly, NLS formation appeared very similar in both rice and Medicago, suggesting a similar developmental program. We show that NLS formation in both rice and Medicago occurs downstream of the common symbiotic pathway. Furthermore, NLS formation occurs downstream of cytokinin-induced step(s). We performed a comprehensive RNA sequencing experiment to identify genes differentially expressed during NLS formation in rice and identified several promising genes for control of NLS based on their biological and molecular functions. We validated the expression patterns of several genes using reverse transcription polymerase chain reaction and show varied expression patterns of these genes during different stages of NLS formation. Finally, we show that NLS induced on rice roots under these conditions can be colonized by nitrogen-fixing bacteria, Azorhizobium caulinodans.
Collapse
Affiliation(s)
- Ryan Hiltenbrand
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| | - Jacklyn Thomas
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| | - Hannah McCarthy
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| | - Karl J. Dykema
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand RapidsMI, USA
| | - Ashley Spurr
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| | - Hamilton Newhart
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand RapidsMI, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, ConwayAR, USA
| |
Collapse
|
30
|
Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis. PLANT & CELL PHYSIOLOGY 2016; 57:1791-800. [PMID: 27373538 DOI: 10.1093/pcp/pcw104] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 05/06/2023]
Abstract
Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors.
Collapse
Affiliation(s)
- Michiko Yasuda
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Hiroki Miwa
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Sachiko Masuda
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Yumiko Takebayashi
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Shin Okazaki
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| |
Collapse
|
31
|
Tatsukami Y, Ueda M. Rhizobial gibberellin negatively regulates host nodule number. Sci Rep 2016; 6:27998. [PMID: 27307029 PMCID: PMC4910070 DOI: 10.1038/srep27998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
In legume-rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia.
Collapse
Affiliation(s)
- Yohei Tatsukami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
32
|
Hewitt DKL, Mills G, Hayes F, Norris D, Coyle M, Wilkinson S, Davies W. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:909-18. [PMID: 26385644 DOI: 10.1016/j.envpol.2015.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation.
Collapse
Affiliation(s)
- D K L Hewitt
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK.
| | - G Mills
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - F Hayes
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - D Norris
- Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - M Coyle
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - S Wilkinson
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK
| | - W Davies
- Lancaster University, Lancaster Environment Centre, Lancaster, Lancashire, LA1 4YQ, UK
| |
Collapse
|
33
|
Lira MA, Nascimento LRS, Fracetto GGM. Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 2015; 6:945. [PMID: 26441880 PMCID: PMC4561803 DOI: 10.3389/fmicb.2015.00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.
Collapse
Affiliation(s)
- Mario A. Lira
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | - Luciana R. S. Nascimento
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | | |
Collapse
|
34
|
De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer FD, Goormachtig S. From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:137-46. [PMID: 25371499 DOI: 10.1093/jxb/eru404] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the rhizosphere, strigolactones not only act as crucial signalling molecules in the communication of plants with parasitic weeds and arbuscular mycorrhiza, but they also play a key role in regulating different aspects of the root system. Here we investigated how strigolactones influence the root architecture of Medicago truncatula. We provide evidence that addition of the synthetic strigolactone analogue GR24 has an inhibitory effect on the lateral root density. Moreover, treatment with GR24 of Sinorhizobium meliloti-inoculated M. truncatula plants affects the nodule number both positively and negatively, depending on the concentration. Plants treated with 0.1 µM GR24 had a slightly increased number of nodules, whereas concentrations of 2 and 5 µM strongly reduced it. This effect was independent of the autoregulation of nodulation mechanism that is controlled by SUPER NUMERIC NODULE. Furthermore, we demonstrate that GR24 controls the nodule number through crosstalk with SICKLE-dependent ethylene signalling. Additionally, because the expression of the nodulation marker EARLY NODULATION11 was strongly reduced in GR24-treated plants, we concluded that strigolactones influence nodulation at a very early stage of the symbiotic interaction.
Collapse
Affiliation(s)
- Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Justine Fromentin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, Institut National de la Recherche Agronomique, F-31326 Castanet-Tolosan, France Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France
| | - Rosita Endah Yocgo
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, Institut National de la Recherche Agronomique, F-31326 Castanet-Tolosan, France
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Bruno Guillotin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Karl Kunert
- Plant Science Department, Forestry and Agricultural Biotechnology Institute, University of Pretoria, 0083 Pretoria, South Africa
| | - François-Didier Boyer
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Equipe de Recherche Labellisée Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Equipe de Recherche Labellisée Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Unité Propre de Recherche 2301, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
35
|
Hayashi S, Gresshoff PM, Ferguson BJ. Mechanistic action of gibberellins in legume nodulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:971-8. [PMID: 24673766 DOI: 10.1111/jipb.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 05/26/2023]
Abstract
Legume plants are capable of entering into a symbiotic relationship with rhizobia bacteria. This results in the formation of novel organs on their roots, called nodules, in which the bacteria capture atmospheric nitrogen and provide it as ammonium to the host plant. Complex molecular and physiological changes are involved in the formation and establishment of such nodules. Several phytohormones are known to play key roles in this process. Gibberellins (gibberellic acids; GAs), a class of phytohormones known to be involved in a wide range of biological processes (i.e., cell elongation, germination) are reported to be involved in the formation and maturation of legume nodules, highlighted by recent transcriptional analyses of early soybean symbiotic steps. Here, we summarize what is currently known about GAs in legume nodulation and propose a model of GA action during nodule development. Results from a wide range of studies, including GA application, mutant phenotyping, and gene expression studies, indicate that GAs are required at different stages, with an optimum, tightly regulated level being key to achieve successful nodulation. Gibberellic acids appear to be required at two distinct stages of nodulation: (i) early stages of rhizobia infection and nodule primordium establishment; and (ii) later stages of nodule maturation.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
36
|
Ferguson BJ, Li D, Hastwell AH, Reid DE, Li Y, Jackson SA, Gresshoff PM. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1085-97. [PMID: 25040127 DOI: 10.1111/pbi.12216] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 05/06/2023]
Abstract
Legume plants regulate the number of nitrogen-fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative- and functional-genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot-controlled and nitrate-tolerant supernodulation phenotype. Homeologous over-expression of the nodulation-suppressive CLE peptide-encoding soybean gene, GmRIC1, abolished nodulation in wild-type bean, but had no discernible effect on PvNARK-mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK-dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation-suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
38
|
Foo E, Ferguson BJ, Reid JB. The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. ANNALS OF BOTANY 2014; 113:1037-45. [PMID: 24694828 PMCID: PMC3997646 DOI: 10.1093/aob/mcu030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process. METHODS A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated. KEY RESULTS Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones. CONCLUSIONS No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.
Collapse
Affiliation(s)
- E. Foo
- For correspondence. E-mail
| | | | | |
Collapse
|
39
|
Foo E, Ferguson BJ, Reid JB. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. PLANT SIGNALING & BEHAVIOR 2014; 9:e29593. [PMID: 25763697 PMCID: PMC4205148 DOI: 10.4161/psb.29593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 05/20/2023]
Abstract
All of the classical plant hormones have been suggested to influence nodulation, including some that interact with the Autoregulation of Nodulation (AON) pathway. Leguminous plants strictly regulate the number of nodules formed through this AON pathway via a root-shoot-root loop that acts to suppress excessive nodulation. A related pathway, the Autoregulation of Mycorrhization (AOM) pathway controls the more ancient, arbuscular mycorrhizal (AM) symbiosis. A comparison of the published responses to the classical hormones in these 2 symbioses shows that most influence the symbioses in the same direction. This may be expected if they affect the symbioses via common components of these symbiotic regulatory pathways. However, some hormones influence these symbioses in opposite directions, suggesting a more complex relationship, and probably one that is not via the common components of these pathways. In a recent paper we showed, using a genetic approach, that strigolactones and brassinosteroids do not act downstream of the AON genes examined and argued that they probably act independently to promote nodule formation. Recently it has been shown that the control of nodulation via the AON pathway involves mobile CLE peptide signals. It is therefore suggested that a more direct avenue to determine if the classical hormones play a direct role in the autoregulatory pathways is to further examine whether CLE peptides and other components of these processes can influence, or be influenced by, the classical hormones. Such studies and other comparisons between the nodulation and mycorrhizal symbioses should allow the role of the classical hormones in these critical symbioses to be rapidly advanced.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences; University of Tasmania; TAS Australia
- Correspondence to: Eloise Foo,
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences; The University of Queensland; St Lucia, Brisbane, QLD Australia
| | - James B Reid
- School of Biological Sciences; University of Tasmania; TAS Australia
| |
Collapse
|
40
|
Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. FRONTIERS IN PLANT SCIENCE 2013; 4:414. [PMID: 24167508 PMCID: PMC3805956 DOI: 10.3389/fpls.2013.00414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/29/2013] [Indexed: 05/22/2023]
Abstract
Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe-plant-insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht UniversityUtrecht, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Joop J. A. van Loon, Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, Netherlands e-mail:
| |
Collapse
|
41
|
Gough C, Jacquet C. Nod factor perception protein carries weight in biotic interactions. TRENDS IN PLANT SCIENCE 2013; 18:566-74. [PMID: 23850222 DOI: 10.1016/j.tplants.2013.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 05/10/2023]
Abstract
Plant plasma membrane-bound receptors with extracellular lysin motif (LysM) domains participate in interactions with microorganisms. In Medicago truncatula, the LysM receptor-like kinase gene nodulation (Nod) factor perception (NFP) is a key gene that controls the perception of rhizobial lipochitooligosaccharide (LCO) Nod factors for the establishment of the Rhizobium-legume symbiosis. In this article, we review recent data that have refined our understanding of this function and that have revealed a role for NFP in the perception of arbuscular mycorrhizal (AM) symbiotic signals and plant pathogenic microorganisms. The dual role of NFP in symbiosis and immunity suggests that this receptor protein controls the perception of different signals and the activation of different downstream signalling pathways. These advances provide new insights into the evolution and functioning of this versatile plant protein.
Collapse
Affiliation(s)
- Clare Gough
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; Centre National de la Recherche Scientifique (CNRS), Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| | | |
Collapse
|