1
|
Prangenberg J, Doberentz E, Mawick A, Madea B. Mini Review: The Forensic Value of Heat Shock Proteins. Front Med (Lausanne) 2022; 8:800100. [PMID: 35083250 PMCID: PMC8785417 DOI: 10.3389/fmed.2021.800100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Forensic pathologists are routinely confronted with unclear causes of death or related findings. In some instances, difficulties arise in relation to questions posed by criminal investigators or prosecutors. Such scenarios may include questions about wound vitality or cause of death where typical or landmark findings are difficult to ascertain. In addition to the usual examinations required to clarify unclear causes of death or address specific questions, immunohistochemistry and genetic analyses have become increasingly important techniques in this area since their establishment last century. Since then, many studies have determined the usefulness and significance of immunohistochemical and genetic investigations on cellular structures and proteins. For example, these proteins include heat shock proteins (Hsp), which were first described in 1962 and are so called based on their molecular weight. They predominantly act as molecular chaperones with cytoprotective functions that support cell survival under (sub) lethal conditions. They are expressed in specific cellular compartments and have many divergent functions. Central family members include, Hsp 27, 60, and 70. This mini review investigates recent research on the Hsp family, their application range, respective forensic importance, and current limitations and provides an outlook on possible applications within forensic science.
Collapse
Affiliation(s)
| | - Elke Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| | - Anthea Mawick
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Buchtova T, Skrott Z, Chroma K, Rehulka J, Dzubak P, Hajduch M, Lukac D, Arampatzis S, Bartek J, Mistrik M. Cannabidiol-induced activation of the metallothionein pathway impedes anticancer effects of disulfiram and its metabolite CuET. Mol Oncol 2021; 16:1541-1554. [PMID: 34632694 PMCID: PMC8978514 DOI: 10.1002/1878-0261.13114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022] Open
Abstract
Disulfiram (DSF), an established alcohol‐aversion drug, is a candidate for repurposing in cancer treatment. DSF’s antitumor activity is supported by preclinical studies, case reports, and small clinical trials; however, ongoing clinical trials of advanced‐stage cancer patients encounter variable results. Here, we show that one reason for the inconsistent clinical effects of DSF may reflect interference by other drugs. Using a high‐throughput screening and automated microscopy, we identify cannabidiol, an abundant component of the marijuana plant used by cancer patients to mitigate side effects of chemotherapy, as a likely cause of resistance to DSF. Mechanistically, in cancer cells, cannabidiol triggers the expression of metallothioneins providing protective effects by binding heavy metal‐based substances including the bis‐diethyldithiocarbamate‐copper complex (CuET). CuET is the documented anticancer metabolite of DSF, and we show here that the CuET’s anticancer toxicity is effectively neutralized by metallothioneins. Overall, this work highlights an example of undesirable interference between cancer therapy and the concomitant usage of marijuana products. In contrast, we report that insufficiency of metallothioneins sensitizes cancer cells toward CuET, suggesting a potential predictive biomarker for DSF repurposing in oncology.
Collapse
Affiliation(s)
- Tereza Buchtova
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Zdenek Skrott
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Katarina Chroma
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Jiri Rehulka
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - David Lukac
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | | | - Jiri Bartek
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic.,Danish Cancer Society Research Center, Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Martin Mistrik
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Kim JY, Kim Y, Cha HK, Lim HY, Kim H, Chung S, Hwang JJ, Park SH, Son GH. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications. Mol Cells 2017; 40:410-417. [PMID: 28614917 PMCID: PMC5523017 DOI: 10.14348/molcells.2017.0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
Estimation of postmortem interval (PMI) is a key issue in the field of forensic pathology. With the availability of quantitative analysis of RNA levels in postmortem tissues, several studies have assessed the postmortem degradation of constitutively expressed RNA species to estimate PMI. However, conventional RNA quantification as well as biochemical and physiological changes employed thus far have limitations related to standardization or normalization. The present study focuses on an interesting feature of the subdomains of certain RNA species, in which they are site-specifically cleaved during apoptotic cell death. We found that the D8 divergent domain of ribosomal RNA (rRNA) bearing cell death-related cleavage sites was rapidly removed during postmortem RNA degradation. In contrast to the fragile domain, the 5' terminal region of 28S rRNA was remarkably stable during the postmortem period. Importantly, the differences in the degradation rates between the two domains in mammalian 28S rRNA were highly proportional to increasing PMI with a significant linear correlation observed in mice as well as human autopsy tissues. In conclusion, we demonstrate that comparison of the degradation rates between domains of a single RNA species provides quantitative information on postmortem degradation states, which can be applied for the estimation of PMI.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Yunmi Kim
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Hyo Kyeong Cha
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Hye Young Lim
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Hyungsub Kim
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760,
Korea
| | - Juck-Joon Hwang
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Seong Hwan Park
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
| | - Gi Hoon Son
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841,
Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841,
Korea
| |
Collapse
|
4
|
Son GH, Park SH, Kim Y, Kim JY, Kim JW, Chung S, Kim YH, Kim H, Hwang JJ, Seo JS. Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death. Mol Cells 2014; 37:241-7. [PMID: 24642708 PMCID: PMC3969045 DOI: 10.14348/molcells.2014.2344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 02/03/2023] Open
Abstract
Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Hoon Kim
- Division of Forensic Medicine, National Forensic Service, Seoul 158-707,
Korea
| | | | | | - Joong-Seok Seo
- Division of Forensic Medicine, National Forensic Service, Seoul 158-707,
Korea
| |
Collapse
|