1
|
Duerig I, Pylaeva E, Ozel I, Wainwright S, Thiel I, Bordbari S, Domnich M, Siakaeva E, Lakomek A, Toppe F, Schleupner C, Geisthoff U, Lang S, Droege F, Jablonska J. Nonfunctional TGF-β/ALK1/ENG signaling pathway supports neutrophil proangiogenic activity in hereditary hemorrhagic telangiectasia. J Leukoc Biol 2023; 114:639-650. [PMID: 37555392 DOI: 10.1093/jleuko/qiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
The transforming growth factor β (TGF-β)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-β/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-β/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.
Collapse
Affiliation(s)
- Inga Duerig
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ekaterina Pylaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Irem Ozel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sami Wainwright
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ilona Thiel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sharareh Bordbari
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Maksim Domnich
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Elena Siakaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Antonia Lakomek
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Felicia Toppe
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Carolin Schleupner
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Urban Geisthoff
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Marburg, University of Gießen and Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Stephan Lang
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Freya Droege
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Alkhathami AG, Abdullah MR, Ahmed M, Hassan Ahmed H, Alwash SW, Muhammed Mahdi Z, Alsaikhan F, Dera AA. Bone morphogenetic protein (BMP)9 in cancer development: mechanistic, diagnostic, and therapeutic approaches? J Drug Target 2023:1-11. [PMID: 37461888 DOI: 10.1080/1061186x.2023.2236330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)β superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Muhjaha Ahmed
- Medical Technical college, Al-Farahidi University, Iraq
| | | | - Sarab W Alwash
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq Hillah
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Mori N, Esaki N, Shimoyama Y, Shiraki Y, Asai N, Sakai T, Nishida Y, Takahashi M, Enomoto A, Mii S. Significance of expression of CD109 in osteosarcoma and its involvement in tumor progression via BMP signaling. Pathol Res Pract 2023; 245:154443. [PMID: 37030166 DOI: 10.1016/j.prp.2023.154443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Osteosarcoma, the most common primary malignant bone tumor, is defined by the formation of neoplastic osteoid and/or bone. This sarcoma is a highly heterogeneous disease with a wide range of patient outcomes. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in various types of malignant tumors. We previously reported that CD109 is expressed in osteoblasts and osteoclasts in normal human tissues and plays a role in bone metabolism in vivo. While CD109 has been shown to promote various carcinomas through the downregulation of TGF-β signaling, the role and mechanism of CD109 in sarcomas remain largely unknown. In this study, we investigated the molecular function of CD109 in sarcomas using osteosarcoma cell lines and tissue. Semi-quantitative immunohistochemical analysis using human osteosarcoma tissue revealed a significantly worse prognosis in the CD109-high group compared with the CD109-low group. We found no association between CD109 expression and TGF-β signaling in osteosarcoma cells. However, enhancement of SMAD1/5/9 phosphorylation was observed in CD109 knockdown cells under bone morphogenetic protein-2 (BMP-2) stimulation. We also performed immunohistochemical analysis for phospho-SMAD1/5/9 using human osteosarcoma tissue and found a negative correlation between CD109 expression and SMAD1/5/9 phosphorylation. In vitro wound healing assay showed that osteosarcoma cell migration was significantly attenuated in CD109-knockdown cells compared with control cells in the presence of BMP. These results suggest that CD109 is a poor prognostic factor in osteosarcoma and affects tumor cell migration via BMP signaling.
Collapse
|
4
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
5
|
Gomez Hernandez MP, Starman EE, Davis AB, Harishchandra Hikkaduwa Withanage M, Zeng E, Lieberman SM, Brogden KA, Lanzel EA. A distinguishing profile of chemokines, cytokines, and biomarkers in the saliva of children with Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:4765-4777. [PMID: 33512494 PMCID: PMC8487313 DOI: 10.1093/rheumatology/keab098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Indexed: 01/08/2023] Open
Abstract
Objective SS is an autoimmune disease most commonly diagnosed in adults but can occur in children. Our objective was to assess the presence of chemokines, cytokines and biomarkers (CCBMs) in saliva from these children that were associated with lymphocyte and mononuclear cell functions. Methods Saliva was collected from 11 children diagnosed with SS prior to age 18 years and 16 normal healthy children. A total of 105 CCBMs were detected in multiplex microparticle-based immunoassays. ANOVA and t test (0.05 level) were used to detect differences. Ingenuity Pathway Analysis (IPA) was used to assess whether elevated CCBMs were in annotations associated with immune system diseases and select leukocyte activities and functions. Machine learning methods were used to evaluate the predictive power of these CCBMs for SS and were measured by receiver operating characteristic (ROC) curve and area under curve (AUC). Results Of the 105 CCBMs detected, 43 (40.9%) differed in children with SS from those in healthy study controls (P < 0.05) and could differentiate the two groups (P < 0.05). Elevated CCBMs in IPA annotations were associated with autoimmune diseases and with leukocyte chemotaxis, migration, proliferation, and regulation of T cell activation. The best AUC value in ROC analysis was 0.93, indicating that there are small numbers of CCBMs that may be useful for diagnosis of SS. Conclusion While 35 of these 43 CCBMs have been previously reported in SS, 8 CCBMs had not. Additional studies focusing on these CCBMs may provide further insight into disease pathogenesis and may contribute to diagnosis of SS in children.
Collapse
Affiliation(s)
| | - Emily E Starman
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Andrew B Davis
- Department of Otolaryngology, College of Medicine, University of Iowa, Iowa City, IA USA
| | | | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics-Division of Rheumatology, Allergy and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA USA
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA USA
| |
Collapse
|
6
|
Chen H, Pan R, Li H, Zhang W, Ren C, Lu Q, Chen H, Zhang X, Nie Y. CHRDL2 promotes osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. Cell Biol Int 2021; 45:623-632. [PMID: 33245175 PMCID: PMC8049056 DOI: 10.1002/cbin.11507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
Various studies demonstrated that bone morphogenetic proteins (BMPs) and their antagonists contribute to the development of cancers. Chordin-like 2 (CHRDL2) is a member of BMP antagonists. However, the role and its relative mechanism of CHRDL2 in osteosarcoma remains unclear. In the present study, we demonstrated that the expression of CHRDL2 was significantly upregulated in osteosarcoma tissues and cell lines compared with adjacent tissues and human normal osteoblast. Inhibition of CHRDL2 decreased the proliferation and colony formation of osteosarcoma cells in vitro, as well as the migration and invasion. CHRDL2 overexpression induced the opposite effects. CHRDL2 can bind with BMP-9, thus decreasing BMP-9 expression and the combination to its receptor protein kinase ALK1. It was predicted that BMP-9 regulates PI3K/AKT pathways using gene set enrichment analysis. Inhibition of CHRDL2 decreased the activation of PI3K/AKT pathway, while overexpression of CHRDL2 upregulated the activation. Increasing the expression of BMP-9 reversed the effects of CHRDL2 overexpression on the activation of PI3K/AKT pathway, as well as the proliferation and metastasis of osteosarcoma cells. Take together, our present study revealed that CHRDL2 upregulated in osteosarcoma tissues and cell lines, and promoted osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. CHRDL2 maybe an oncogene in osteosarcoma, as well as novel biomarker for the diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Houping Chen
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Hao Li
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Wenguang Zhang
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Chong Ren
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Qiaoying Lu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Hui Chen
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiangyan Zhang
- Department of Respiration, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yingjie Nie
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Potential roles of bone morphogenetic protein-9 in glucose and lipid homeostasis. J Physiol Biochem 2020; 76:503-512. [PMID: 32808114 DOI: 10.1007/s13105-020-00763-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/09/2020] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic protein-9 (BMP-9) is a novel cytokine which is cloned from the fetal mouse liver cDNA library and belongs to the member of the transforming growth factor-β (TGF-β) superfamily. BMP-9 is mainly secreted by the liver and exerts a variety of physiological functions. In this review, we present the latest knowledge on the biochemistry of BMP-9 and its role in glucose metabolism and lipid homeostasis. We introduced the expression site, structure, synthesis, and secretion of BMP-9, as well as BMP-9 signaling pathway. We also discuss the effects of BMP-9 on glucose metabolism and lipid metabolism in different organs. BMP-9 can regulate glucose and lipid homeostasis in the body by inhibiting liver gluconeogenesis, transforming white adipose tissue to brown adipose tissue, promoting muscle glycogen synthesis, increasing the uptake and utilization of glucose by muscle tissue, increasing liver and adipose tissue insulin sensitivity, promoting insulin synthesis and secretion, inhibiting liver lipid deposition, and playing a leptin-like role. Finally, through the results of animal intervention studies and human clinical studies in the review, we deeply understand the association of BMP-9 with obesity, insulin resistance (IR), type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD), which provides new ideas for the prevention and treatment of diseases.
Collapse
|
8
|
Fan Y, Guo L, Zheng H, Ji C, Wang W, Sun H. BMP-9 is a novel marker for colorectal tumorigenesis undergoing the normal mucosa-adenoma-adenocarcinoma sequence and is associated with colorectal cancer prognosis. Oncol Lett 2020; 19:271-282. [PMID: 31897139 PMCID: PMC6923933 DOI: 10.3892/ol.2019.11125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023] Open
Abstract
Depending on the type of cancer, bone morphogenetic protein-9 (BMP-9) can promote or inhibit tumorigenesis; however, the function of BMP-9 in colorectal cancer remains unclear. The aim of the present study was to evaluate the clinicopathological importance of BMP-9 expression in the tumorigenesis of normal colorectal epithelial tissue, and subsequent transformation into adenoma and carcinoma. In addition, the present study aimed to determine the prognostic value of BMP-9 on the survival of patients with colorectal cancer (CRC). A total of 65 patients with pathologically confirmed colorectal adenocarcinoma and a history of adenoma were enrolled. BMP-9 and Ki-67 expression was assessed retrospectively using paraffin-embedded samples of normal colorectal mucosa, colorectal adenoma and CRC obtained from each patient. The prognostic value of BMP-9 expression was analyzed in a group comprising 48 patients with CRC and a mean follow-up duration of 39.1 months. Bioinformatics analyses were performed in order to validate the results of the present study using published CRC datasets. The results from the present study suggested that the expression of BMP-9 gradually increased during the transition from normal mucosa to adenoma and subsequent adenocarcinoma (P<0.05); however, no significant association between the expression levels of BMP-9 and the clinicopathological parameters of patients was reported. Kaplan-Meier analysis revealed that patients with high expression levels of BMP-9 exhibited shorter overall survival rate than those with low levels of expression (54.7 vs. 41.3 months; log-rank test, P<0.05). Furthermore, regardless of tumor location and the presence of blood vessel tumor emboli, the univariate and multivariate analyses indicated that BMP-9 expression may be an independent prognostic factor for the overall survival rate of patients with CRC. The results of the present study suggested that BMP-9 may serve an oncogenic role and possess prognostic value in CRC.
Collapse
Affiliation(s)
- Yinjie Fan
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Lingxiang Guo
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Huachuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chunyong Ji
- Department of General Surgery, The Affiliated Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Wenbin Wang
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongzhi Sun
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Key Laboratory of Tumor Clinical Metabolomics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
Gu Q, Luo Y, Chen C, Jiang D, Huang Q, Wang X. GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Exp Cell Res 2019; 384:111619. [PMID: 31525341 DOI: 10.1016/j.yexcr.2019.111619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is the most common malignancy of bone that occurs in young adults and children, with a five-year survival rate of 60-70%. Metastasis of osteosarcoma maintains an even poorer prognosis. GREM1 plays an important role in regulating organogenesis, body patterning, and tissue differentiation. However, there are limited studies on GREM1 in osteosarcomas. This study was carried out to characterize the expression and function of GREM1 in osteosarcoma cells, thus extending our understanding of osteosarcoma metastasis. GREM1 expression was detected in hBMSC, hFOB1.19, Saos-2, MG63 and U2OS cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Gain- and loss-of-function approaches were used to assess the biological function of GREM1 in U2OS cells. The effects of GREM1 on U2OS cell proliferation were examined using the CCK-8 and colony formation assay. Migration and invasion ability were confirmed by the wound healing and Transwell assay, respectively. Flow cytometry was used to analyse the effect of GREM1 on the cell cycle and apoptosis. The expression of GREM1 targets was evaluated by qRT-PCR and western blotting. The expression of GREM1 was significantly downregulated in osteosarcoma. GREM1 overexpression inhibited the proliferation, migration and invasion of U2OS cells. GREM1 overexpression suppressed tumour cell-induced endothelial cell migration and invasion ability. The effect of GREM1 may be transduced through regulation of the BMP target transcription factor inhibitor of MMP-2 and -9 as well as Id1. GREM1 overexpression and knockdown regulates the tumorigenesis of osteosarcoma in vivo. In conclusion, GREM1 is downregulated in osteosarcoma cells, and overexpression of GREM1 inhibits the proliferation, migration, invasion and angiogenesis abilities of osteosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Qingguo Gu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yibin Luo
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Chen
- Department of Orthopedics, Shanghai University of Medicine &health Sciences Affiliated Zhoupu Hospital, China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Xinwei Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
10
|
The tetraspanin CD81 mediates the growth and metastases of human osteosarcoma. Cell Oncol (Dordr) 2019; 42:861-871. [PMID: 31494861 DOI: 10.1007/s13402-019-00472-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE CD81 is a member of the tetraspanin family of membrane proteins. Recently, it has been shown that CD81 may be involved in cancer cell proliferation and metastasis. As yet, however, there have been few reports on the expression and role of CD81 in osteosarcoma. METHODS The expression of CD81 was investigated in human osteoblast cell line hFOB1.19 and in human osteosarcoma cell lines Saos2, MG63 and 143B. The expression of CD81 was inhibited in osteosarcoma cells using siRNA after which cell proliferation, migration and invasion were assessed. We also used Western blotting to investigate the phosphorylation status of Akt, Erk, JNK and p38, and measured the expression of MMP-2, MMP-9 and MT1-MMP. In addition, we used a CRISPR/Cas9 system to stably knock out CD81 expression in 143B cells, transplanted the cells into mice, and assessed tumor formation and lung metastasis in these mice compared to those in the control group. RESULTS We found that CD81 was expressed in the human osteoblast cell line and in all osteosarcoma cell lines tested. The osteosarcoma cell line 143B exhibited a particularly high level of expression. In addition, we found that osteosarcoma cell proliferation, migration and invasion were decreased after CD81 inhibition, and that the phosphorylation of Akt and Erk was suppressed. Also, the expression levels of MMP-2, MMP-9 and MT1-MMP were found to be suppressed, with MMP-9 showing the greatest suppression. In vivo, we found that mice transplanted with CD81 knockout 143B cells exhibited significantly less tumor formation and lung metastasis than mice in the control group. CONCLUSION Based on our findings we conclude that inhibition of CD81 suppresses intracellular signaling and reduces tumorigenesis and lung metastasis in osteosarcoma cells.
Collapse
|
11
|
Fan H, Lu S, Wang S, Zhang S. Identification of critical genes associated with human osteosarcoma metastasis based on integrated gene expression profiling. Mol Med Rep 2019; 20:915-930. [PMID: 31173206 PMCID: PMC6625205 DOI: 10.3892/mmr.2019.10323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common type of malignant bone cancer, which often affects teenagers and young adults. The present study aimed to screen for critical genes and microRNAs (miRNAs/miRs) involved in osteosarcoma. A total of four microarray datasets (accession numbers GSE32981, GSE21257, GSE14827 and GSE14359) were downloaded from the Gene Expression Omnibus database. Following data preprocessing, module analysis was performed to identify the stable modules using the weighted gene co‑expression network analysis (WGCNA) package. The differentially expressed genes (DEGs) between metastatic samples and non‑metastatic samples were screened, followed by gene co‑expression network construction, and Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Subsequently, prognosis‑associated genes were screened and a miRNA‑target gene regulatory network was constructed. Finally, the data for critical genes were validated. WGCNA analysis identified six modules; blue and yellow modules were significantly positively associated with osteosarcoma metastasis. A total of 1,613 DEGs were screened between primary tissue samples and metastatic samples. Following comparison of the genes in the two (blue and yellow) modules, a total of 166 DEGs were identified (metastatic samples vs. non‑metastatic samples). Functional enrichment analysis demonstrated that these DEGs were mainly involved in 'defense response', 'p53 signaling pathway' and 'lysosome'. By utilizing the clinical information in GSE21257, 10 critical genes associated with osteosarcoma prognosis were obtained, including CTP synthase 2 (CTPS2), tumor protein p53 inducible protein 3 (TP53I3) and solute carrier family 1 member 1 (SLC1A1). In addition, hsa‑miR‑422a and hsa‑miR‑194 were highlighted in the miRNA‑target gene network. Finally, matrix metallopeptidase 3 (MMP3) and vascular endothelial growth factor B (VEGFB) were predicted as critical genes in osteosarcoma metastasis. CTPS2, TP53I3 and SLC1A1 may serve major roles in osteosarcoma development, and hsa‑miR‑422a, hsa‑miR‑194, MMP3 and VEGFB may be associated with osteosarcoma metastasis.
Collapse
Affiliation(s)
- Hongwu Fan
- Department of Orthopedics, China Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shan Lu
- Department of Anesthesiology, China Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shengqun Wang
- Department of Orthopedics, China Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shanyong Zhang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
12
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
13
|
Song B, Li XF, Yao Y, Xu QQ, Meng XM, Huang C, Li J. BMP9 inhibits the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis via the PI3K/AKT signaling pathway. Int Immunopharmacol 2019; 74:105685. [PMID: 31203157 DOI: 10.1016/j.intimp.2019.105685] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease; its pathogenesis remains unclear. Fibroblast-like synoviocytes (FLSs) play a vital role in the pathogenesis of RA. BMP9, a member of the bone morphogenetic protein (BMP) family, has been reported to play a critical role in both normal physiological processes and the pathology of various diseases. In this study, we explored the function and underlying mechanisms of BMP9 in the proliferation and migration of RA FLSs. We found that BMP9 expression was significantly downregulated in the synovial tissues of RA patients, compared with those of OA patients; BMP9 expression was also low in adjuvant-induced arthritis (AA) samples. Additionally, inhibition of BMP9 expression by BMP9 siRNA increased the proliferation of AA FLSs, and the expression of c-Myc, Cyclin D1, MMP-2, and MMP-9, but not TIMP-1, in AA FLSs. However, AA FLSs transfected with the overexpression vector PEX-3-BMP9 showed reduced proliferation and expression of c-Myc, Cyclin D1, MMP-2, and MMP-9, but not TIMP-1. Further studies indicate that BMP9 may induce the activation of the PI3K/AKT signaling pathway. Thus, these data indicate that BMP9 may play a critical role in the proliferation and migration of FLSs through the activation of the AKT signaling pathway.
Collapse
Affiliation(s)
- Biao Song
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Yao Yao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Qing-Qing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
14
|
Tang H, Tang Z, Jiang Y, Wei W, Lu J. Pathological and therapeutic aspects of matrix metalloproteinases: Implications in osteosarcoma. Asia Pac J Clin Oncol 2019; 15:218-224. [PMID: 31111666 DOI: 10.1111/ajco.13165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is one of the most common malignant bone tumors in children and adolescents, and the eighth leading form of childhood cancer. Matrix metalloproteinases (MMPs) are proteolytic enzymes implicated in certain cancers including OS. In this review, we discuss the mechanism of actions of MMPs in progression of OS, and the therapeutic use of MMPs inhibitors in the treatment of OS with subsequent clinical studies and future management. The expression of MMPs is upregulated in cancer cells by a variety of cytokines and growth factors, and upregulation of MMPs induces degradation of the extracellular matrix that contributes to cell proliferation by releasing growth factors. MMPs promote the detachment and migration of endothelial cells, cross the basement membrane as well as invade the surrounding lymphatic vessels and causes cancer metastasis. The use of selective MMP inhibitors with limited side effects might be promising therapeutic strategy in the treatment of OS. More clinical trials are necessary to evaluate the role of selective MMPs inhibitors in the prevention and treatment of OS along with their assessment of toxicity.
Collapse
Affiliation(s)
- Huayan Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Weisheng Wei
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Jian Lu
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| |
Collapse
|
15
|
Porcù E, Maule F, Boso D, Rampazzo E, Barbieri V, Zuccolotto G, Rosato A, Frasson C, Viola G, Della Puppa A, Basso G, Persano L. BMP9 counteracts the tumorigenic and pro-angiogenic potential of glioblastoma. Cell Death Differ 2018; 25:1808-1822. [PMID: 29977042 DOI: 10.1038/s41418-018-0149-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized and aggressive brain tumor, with a strong ability to disseminate and invade the surrounding parenchyma. In addition, a subpopulation of GBM stem cells has been reported to possess the ability to transdifferentiate into tumor-derived endothelial cells (TDECs), supporting the resistance to anti-angiogenic treatments of newly formed blood vessels. Bone Morphogenetic Protein 9 (BMP9) is critically involved in the processes of cancer cell differentiation, invasion and metastasis, representing a potential tool in order to impair the intrinsic GBM aggressiveness. Here we demonstrate that BMP9 is able to trigger the activation of SMADs in patient-derived GBM cells, and to strongly inhibit proliferation and invasion by reducing the activation of PI3K/AKT/MAPK and RhoA/Cofilin pathways, respectively. Intriguingly, BMP9 treatment is sufficient to induce a strong differentiation of GBM stem-like cells and to significantly counteract the already reported process of GBM cell transdifferentiation into TDECs not only in in vitro mimicked TDEC models, but also in vivo in orthotopic xenografts in mice. Additionally, we describe a strong BMP9-mediated inhibition of the whole angiogenic process engaged during GBM tumor formation. Based on these results, we believe that BMP9, by acting at multiple levels against GBM cell aggressiveness, can be considered a promising candidate, to be further developed, for the future therapeutic management of GBM.
Collapse
Affiliation(s)
- Elena Porcù
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | - Francesca Maule
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | - Daniele Boso
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | - Elena Rampazzo
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Gaia Zuccolotto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Chiara Frasson
- Department of Woman and Children Health, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica - Città della Speranza - IRP, Padova, Italy
| | - Giampietro Viola
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Department of Woman and Children Health, University of Padova, Padova, Italy
| | - Luca Persano
- Istituto di Ricerca Pediatrica - Città della Speranza - IRP, Padova, Italy.
| |
Collapse
|
16
|
Li J, Ye L, Shi X, Chen J, Feng F, Chen Y, Xiao Y, Shen J, Li P, Jiang WG, He J. Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer. Oncotarget 2017; 7:15678-89. [PMID: 26910889 PMCID: PMC4941269 DOI: 10.18632/oncotarget.7463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xiaoshun Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Jingyi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yaoqi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianfei Shen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
17
|
Liang J, Zhang J, Chen F, Lian Z, Dong Y, Lu N, Jia Y. Bone morphogenetic protein 9 is a potential tumor suppressor in osteosarcoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11030-11036. [PMID: 31966448 PMCID: PMC6965842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/11/2016] [Indexed: 06/10/2023]
Abstract
Transforming growth factor-β (TGF-β) is known to promote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF-β family expressed in a variety of human carcinoma cell lines. Although accumulating evidence has shown that BMP9 plays important roles in the regulation of various cellular processes, the function of BMP9 in clinical osteosarcoma remains to be explored. In this study, BMP9 expression was analyzed in 55 osteosarcoma patient samples and their matching, distant non-cancerous tissues. And the roles of BMP9 in osteosarcoma cell proliferation, apoptosis and cell cycle were also examined. Our results showed that different expression level of BMP9 was detected in all osteosarcoma samples while no expression in normal tissues. Surprisingly, there was a negative association between the expression level of BMP9 and osteosarcoma grade, with low level of BMP9 being found in high histological grade osteosarcoma. Knockdown of BMP9 accelerated the proliferation of MG63, SaOS-2, and U2OS cells. BMP9 overexpression, however, induced cell apoptosis in U2OS cells. Together, these results indicated that BMP9 plays a pivotal role in osteosarcoma. Future studies defining the mechanism of BMP9 effect may lead to novel therapeutic approaches for osteosarcoma.
Collapse
Affiliation(s)
- Jinghao Liang
- Department of Orthopedics, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Jing Zhang
- Department of Oncology, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Fan Chen
- Department of Oncology, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Zhengjun Lian
- Department of Oncology, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Yalu Dong
- Department of Oncology, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Ning Lu
- Department of Oncology, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| | - Yong Jia
- Department of Orthopedics, General Hospital of Xinjiang Military Command of PLAUrumqi, P. R. China
| |
Collapse
|
18
|
Bami M, Mavrogenis AF, Angelini A, Milonaki M, Mitsiokapa E, Stamoulis D, Soucacos PN. Bone morphogenetic protein signaling in musculoskeletal cancer. J Cancer Res Clin Oncol 2016; 142:2061-72. [PMID: 27043154 DOI: 10.1007/s00432-016-2149-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/17/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) superfamily of proteins; they were initially named after their ability to induce ectopic bone formation. Published studies have proved BMPs' role in a variety of biological processes such as embryogenesis and patterning of body axes, and maintaining adult tissue homeostasis. Other studies have focused on BMPs properties, functions and possible involvement in skeletal diseases, including cancer. METHODS A literature search mainly paying attention to the role of BMPs in musculoskeletal tumors was performed in electronic databases. RESULTS This article discusses BMPs synthesis and signaling, and summarizes their prominent roles in the skeletal system for the differentiation of osteoblasts, osteocytes and chondrocytes. CONCLUSIONS The review emphasizes on the role of BMP signaling in the initiation and progression of musculoskeletal cancer.
Collapse
Affiliation(s)
- Myrto Bami
- Orthopaedic Research and Education Center, "Panayotis N. Soucacos", Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Andreas F Mavrogenis
- First Department of Orthopaedics, Athens University Medical School, Attikon University Hospital, Athens, Greece.
| | - Andrea Angelini
- Department of Orthopaedics, Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - Mandy Milonaki
- Orthopaedic Research and Education Center, "Panayotis N. Soucacos", Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Evanthia Mitsiokapa
- Orthopaedic Research and Education Center, "Panayotis N. Soucacos", Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Dimitrios Stamoulis
- Orthopaedic Research and Education Center, "Panayotis N. Soucacos", Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Panayotis N Soucacos
- First Department of Orthopaedics, Athens University Medical School, Attikon University Hospital, Athens, Greece
| |
Collapse
|
19
|
Chen C, Tang Z, Song Q, Yang M, Shi Q, Weng Y. Downregulated microRNA-23b promotes BMP9-mediated osteogenesis in C2C12 myoblast cells by targeting Runx2. Mol Med Rep 2016; 13:2492-8. [PMID: 26820568 PMCID: PMC4768947 DOI: 10.3892/mmr.2016.4814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are identified as negative regulators in gene expression through silencing gene expression at the post-transcriptional and translational levels. Bone morphogenetic protein 9 (BMP9) is the most effective in inducing osteogenesis in the BMP family, the members of which were originally identified as osteoinductive cytokines. In the current study, the role of miR-23b in the progression of BMP9-induced C2C12 myoblasts was investigated. The results indicated that miR-23b was significantly downregulated in C2C12 myoblasts induced by BMP9. Overexpression of miR-23b significantly inhibited osteogenesis in the C2C12 myoblasts. In addition, it was observed that Runx2 was negatively regulated by miR-23b at the post-transcriptional level, via a specific target site within the 3′UTR of Runx2. Knockdown of Runx2 promoted miR-23b-induced inhibition of osteogenesis in C2C12 myoblasts. The expression of Runx2 was observed to be frequently upregulated in osteoblast cell lines and inversely correlated with miR-23b expression. Thus, the results of the present study suggest that miR-23b inhibits BMP9-induced C2C12 myoblast osteogenesis via targeting of the Runx2 gene, acting as a suppressor. The current study contributes to the understanding of the functions of BMP9 in ossification.
Collapse
Affiliation(s)
- Chu Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Zuchuan Tang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Qiling Song
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Min Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Qiong Shi
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| | - Yaguang Weng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, P.R. China
| |
Collapse
|
20
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
21
|
Wang W, Weng Y, Ren W, Zhang Z, Wang T, Wang J, Jiang Y, Chen Y, Zhou L, He T, Zhang Y. Biological roles of human bone morphogenetic protein 9 in the bone microenvironment of human breast cancer MDA-MB-231 cells. Am J Transl Res 2015; 7:1660-1674. [PMID: 26550465 PMCID: PMC4626427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Bone marrow stroma plays a critical role in the bone metastasis of breast cancer. Bone marrow-derived mesenchymal stem cells (BMSC) are critical to facilitate cancer progression. Human bone morphogenetic protein 9 (BMP9) is the most potent osteogenic factor and one of bone-stored growth factors involved in both promotion and inhibition of different cancers. However, it is unclear whether BMP9 correlates with the bone metastasis of breast cancer. This study was to evaluate the role of BMP9 in the interaction between BMSC and breast cancer cells (BCC). To determine whether BMP9 is able to block the tumor promoting effect of BMSC, an in vitro model was developed using breast cancer MDA-MB-231 cells co-cultured with bone marrow-derived mesenchymal stem cells HS-5 with-BMP9 overexpression. The expressions of metastasis-related genes were detected to identify important factors mediating the role of BMP9 in breast cancer cells. Results showed BMP9 could inhibit invasion and promote apoptosis of MDA-MB-231 cells. The expressions of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2) and monocyte chemoattratctant protein-1 (MCP-1) decreased in the MDA-MB-231 cells of BMP9 over-expression group, and the expressions of epithelial-mesenchymal transition (EMT)-related molecules was also reduced. On the other hand, the expression of stromal cell derived factor-1 (SDF-1) decreased in HS-5 cells of BMP9 over-expression group. Taken together, BMP9 is able to inhibit the migration and promote the apoptosis of breast cancer by regulating the interaction between MDA-MB-231 cells and HS-5 cells in which SDF-1/CXCR4-PI3K pathway and EMT are involved.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yaguang Weng
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Wei Ren
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical UniversityNo.1 Youyi Road, Yuzhong District, Chongqing 400042, China
| | - Zhihui Zhang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Ting Wang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Jinshu Wang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yayun Jiang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yingying Chen
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, University of Chicago Medical CenterChicago, IL, USA
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine of The Chinese Ministry of Education, School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical UniversityNo.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
22
|
Akazawa Y, Hasegawa T, Yoshimura Y, Chosa N, Asakawa T, Ueda K, Sugimoto A, Kitamura T, Nakagawa H, Ishisaki A, Iwamoto T. Recruitment of mesenchymal stem cells by stromal cell-derived factor 1α in pulp cells from deciduous teeth. Int J Mol Med 2015; 36:442-8. [PMID: 26082290 DOI: 10.3892/ijmm.2015.2247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022] Open
Abstract
Dental pulp cells (DPCs), including dental pulp (DP) stem cells, play a role in dentine repair under certain conditions caused by bacterial infections associated with caries, tooth fracture and injury. Mesenchymal stem cells (MSCs) have also been shown to be involved in this process of repair. However, the mechanisms through which MSCs are recruited to the DP have not yet been elucidated. Therefore, the aim of the present in vitro study was to investigate whether stromal cell-derived factor 1α (SDF1)-C-X-C chemokine receptor type 4 (CXCR4) signaling is involved in tissue repair in the DP of deciduous teeth. A single-cell clone from DPCs (SDP11) and UE7T-13 cells were used as pulp cells and MSCs, respectively. The MG-63 and HuO9 cells, two osteosarcoma cell lines, were used as positive control cells. Reverse transcription polymerase chain reaction (RT-PCR) revealed that all cell lines (SDP11, UE7T-13 MG-63 and HuO9) were positive for both SDF1 and CXCR4 mRNA expression. Moreover, immunocytochemical analysis indicated that SDF1 and CXCR4 proteins were expressed in the SDP11 and UE7T-13 cells. SDF1 was also detected in the cell lysates (CLs) and conditioned medium (CM) collected from the SDP11 and UE7T-13 cells, and AMD3100, a specific antagonist of CXCR4, inhibited the migration of the UE7T-13 cells; this migration was induced by treatment with CM, which was collected from the SDP11 cells. In addition, real-time PCR showed that the expression of SDF1 in the SDP11 cells was inhibited by treatment with 20 ng/ml fibroblast growth factor (FGF)-2, and exposure to AZD4547, an inhibitor of the FGF receptor, blocked this inhibition. Collectively, these data suggest that SDF1 produced by DP plays an important role in homeostasis, repair and regeneration via the recruitment of MSCs.
Collapse
Affiliation(s)
- Yuki Akazawa
- Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770‑8504, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770‑8504, Japan
| | - Yoshitaka Yoshimura
- Department of Molecular Cell Pharmacology, Division of Oral Pathological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Naoyuki Chosa
- Department of Oral Biochemistry, School of Dentistry, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Takeyoshi Asakawa
- Department of Special Needs Dentistry, Division of Dentistry for Persons with Disabilities, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Kimiko Ueda
- Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770‑8504, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770‑8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770‑8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770‑8504, Japan
| | - Akira Ishisaki
- Department of Oral Biochemistry, School of Dentistry, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770‑8504, Japan
| |
Collapse
|
23
|
Spyropoulou A, Karamesinis K, Basdra EK. Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1700-8. [PMID: 26004394 DOI: 10.1016/j.bbadis.2015.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The skeleton is subject to dynamic changes throughout life and bone remodeling is essential for maintenance of bone functionality. The cell populations which predominantly participate in bone and cartilage remodeling, namely osteocytes, osteoblasts, osteoclasts and chondrocytes sense and respond to external mechanical signals and via a series of molecular cascades control bone metabolism and turnover rate. The aforementioned process, known as mechanotransduction, is the underlying mechanism that controls bone homeostasis and function. A wide array of cross-talking signaling pathways has been found to play an important role in the preservation of bone and cartilage tissue health. Moreover, alterations in bone mechanotransduction pathways, due to genetic, hormonal and biomechanical factors, are considered responsible for the pathogenesis of bone and cartilage diseases. Extensive research has been conducted and demonstrated that aberrations in mechanotransduction pathways result in disease-like effects, however only few signaling pathways have actually been engaged in the development of bone disease. The aim of the present review is to present these signaling molecules and cascades that have been found to be mechano-responsive and implicated in bone disease development, as revealed by research in the last five years. In addition, the role of these molecules as prognostic or diagnostic disease markers and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
24
|
Duan L, Ye L, Wu R, Wang H, Li X, Li H, Yuan S, Zha H, Sun H, Zhang Y, Chen X, Zhang Y, Zhou L. Inactivation of the Phosphatidylinositol 3‐Kinase/Akt Pathway is Involved in BMP9‐mediated Tumor‐suppressive Effects in Gastric Cancer Cells. J Cell Biochem 2015; 116:1080-9. [DOI: 10.1002/jcb.25063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/18/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Liang Duan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Liwei Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Rui Wu
- Department of Laboratory MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016,China
| | - Haiyan Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Xueru Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Huan Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Shimei Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - He Zha
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Hui Sun
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Yunyuan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Xian Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| |
Collapse
|
25
|
Choi YJ, Lee YH, Lee ST. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells. Mol Cells 2014; 38:151-5. [PMID: 25518925 PMCID: PMC4332032 DOI: 10.14348/molcells.2015.2229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023] Open
Abstract
Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.
Collapse
Affiliation(s)
- Yu Jung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Young Hun Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
26
|
Cmoch A, Podszywalow-Bartnicka P, Palczewska M, Piwocka K, Groves P, Pikula S. Stimulators of mineralization limit the invasive phenotype of human osteosarcoma cells by a mechanism involving impaired invadopodia formation. PLoS One 2014; 9:e109938. [PMID: 25314307 PMCID: PMC4196965 DOI: 10.1371/journal.pone.0109938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis). RESULTS In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2) and osteolytic-like (143B) OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate) and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.
Collapse
Affiliation(s)
- Anna Cmoch
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Malgorzata Palczewska
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Patrick Groves
- Department of Biological Chemistry, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
27
|
Zheng L, Zhang D, Zhang Y, Wen Y, Wang Y. mTOR signal transduction pathways contribute to TN-C FNIII A1 overexpression by mechanical stress in osteosarcoma cells. Mol Cells 2014; 37:118-25. [PMID: 24598996 PMCID: PMC3935624 DOI: 10.14348/molcells.2014.2247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 11/27/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migra-tion. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.
Collapse
Affiliation(s)
- Lianhe Zheng
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Dianzhong Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yunfei Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yanhua Wen
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| | - Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710032, Shaanxi Province,
China
| |
Collapse
|
28
|
LV ZILAN, WANG CHUAN, YUAN TAIXIAN, LIU YUEHONG, SONG TAO, LIU YUELIANG, CHEN CHU, YANG MIN, TANG ZUCHUAN, SHI QIONG, WENG YAGUANG. Bone morphogenetic protein 9 regulates tumor growth of osteosarcoma cells through the Wnt/β-catenin pathway. Oncol Rep 2013; 31:989-94. [DOI: 10.3892/or.2013.2931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/29/2013] [Indexed: 11/06/2022] Open
|
29
|
Leblanc E, Drouin G, Grenier G, Faucheux N, Hamdy R. From skeletal to non skeletal: The intriguing roles of BMP-9: A literature review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a4004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|