1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Nikonorova IA, Wang J, Cope AL, Tilton PE, Power KM, Walsh JD, Akella JS, Krauchunas AR, Shah P, Barr MM. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr Biol 2022; 32:1924-1936.e6. [PMID: 35334227 PMCID: PMC9491618 DOI: 10.1016/j.cub.2022.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Juan Wang
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Alexander L Cope
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jonathon D Walsh
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amber R Krauchunas
- University of Delaware, Department of Biological Sciences, 105 The Green, Newark, DE 19716, USA
| | - Premal Shah
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Lu L, Li Z, Shan C, Ma S, Nie W, Wang H, Chen G, Li S, Shu C. Whole transcriptome analysis of schinifoline treatment in Caenorhabditis elegans infected with Candida albicans. Mol Immunol 2021; 135:312-319. [PMID: 33971509 DOI: 10.1016/j.molimm.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Candida albicans is an opportunistic fungal human pathogen that has been causing an increasing number of deaths each year. Due to the widespread use of broad-spectrum antibiotics and immunosuppressants, C. albicans resistance to these therapies has increased. Thus, natural plant inhibitors are being investigated for treating C. albicans infections. Schinifoline is a 4-quinolinone alkaloid with antibacterial, insecticidal, antitumor, and other biological activities. Here, we explored the effects of schinifoline on C. albicans in C. elegans and extracted RNA from uninfected C. elegans, C. elegans infected with C. albicans, and C. elegans infected with C. albicans and treated with 100 mg/l schinifoline. Our results showed that there were significant differences among the three groups. The GO and KEGG pathway analysis suggested that the pathogenicity of C. albicans to C. elegans was caused by abnormal protein function. Schinifoline regulates lysosomal pathway related genes that accelerate the metabolism and degradation of abnormal proteins, thereby inhibiting the negative effects of C. albicans in vivo. These findings advance our understanding of the molecular mechanisms underlying schinifoline inhibition of C. albicans.
Collapse
Affiliation(s)
- Lu Lu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China
| | - Zhuohang Li
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China
| | - Chengying Shan
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China
| | - Shihong Ma
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China
| | - Wei Nie
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China
| | - Haibo Wang
- Shandong Jiuxin Biological Technology Co., Ltd., Shandong, 271500, China
| | - Guoqing Chen
- Shandong Jiuxin Biological Technology Co., Ltd., Shandong, 271500, China
| | - Shuhong Li
- Shandong Jiuxin Biological Technology Co., Ltd., Shandong, 271500, China
| | - Chengjie Shu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211100, China.
| |
Collapse
|
4
|
Le TS, Nguyen TTH, Thi Mai Huong B, Nguyen HG, Ha BH, Nguyen VS, Nguyen MH, Nguyen HH, Wang J. Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. J Nematol 2021; 53:e2021-36. [PMID: 33860269 PMCID: PMC8040142 DOI: 10.21307/jofnem-2021-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/30/2023] Open
Abstract
The study of species biodiversity within the Caenorhabditis genus of nematodes would be facilitated by the isolation of as many species as possible. So far, over 50 species have been found, usually associated with decaying vegetation or soil samples, with many from Africa, South America and Southeast Asia. Scientists based in these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful for understanding the natural history of these species. However, severely limited research budgets are often a constraint for these local scientists. In this study, we aimed to find a more economical, alternative growth media to rear Caenorhabditis and related species. We tested 25 media permutations using cheaper substitutes for the reagents found in the standard nematode growth media (NGM) and found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These new media should facilitate the isolation and characterization of Caenorhabditis and other free-living nematodes for the researchers in the poorer regions such as Africa, South America, and Southeast Asia where nematode diversity appears high.
Collapse
Affiliation(s)
- Tho Son Le
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - T. T. Hang Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Bui Thi Mai Huong
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - H. Gam Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - B. Hong Ha
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Van Sang Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Minh Hung Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Otarigho B, Aballay A. Cholesterol Regulates Innate Immunity via Nuclear Hormone Receptor NHR-8. iScience 2020; 23:101068. [PMID: 32361270 PMCID: PMC7195545 DOI: 10.1016/j.isci.2020.101068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is an essential nutrient for the function of diverse biological processes and for steroid biosynthesis across metazoans. However, the role of cholesterol in immune function remains understudied. Using the nematode Caenorhabditis elegans, which depends on the external environment for cholesterol, we studied the relationship between cholesterol and innate immunity. We found that the transporter CHUP-1 is required for the effect of cholesterol in the development of innate immunity and that the cholesterol-mediated immune response requires the nuclear hormone receptor NHR-8. Cholesterol acts through NHR-8 to transcriptionally regulate immune genes that are controlled by conserved immune pathways, including a p38/PMK-1 MAPK pathway, a DAF-2/DAF-16 insulin pathway, and an Nrf/SKN-1 pathway. Our results indicate that cholesterol plays a key role in the activation of conserved microbicidal pathways that are essential for survival against bacterial infections.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Preez GD, Fourie H, Daneel M, Miller H, Höss S, Ricci C, Engelbrecht G, Zouhar M, Wepener V. Oxygen consumption rate of Caenorhabditis elegans as a high-throughput endpoint of toxicity testing using the Seahorse XF e96 Extracellular Flux Analyzer. Sci Rep 2020; 10:4239. [PMID: 32144330 PMCID: PMC7060326 DOI: 10.1038/s41598-020-61054-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Caenorhabditis elegans presents functioning, biologically relevant phenotypes and is frequently used as a bioindicator of toxicity. However, most C. elegans in vivo effect-assessment methods are laborious and time consuming. Therefore, we developed a novel method to measure the oxygen consumption rate of C. elegans as a sublethal endpoint of toxicity. This protocol was tested by exposing 50 larval stage one C. elegans individuals for 48 h (at 20 °C) to different concentrations of two toxicants i.e. benzylcetyldimethylammonium chloride (BAC-C16) and cadmium (Cd). Following exposures, the oxygen consumption rate of the C. elegans individuals were measured using the high-throughput functionality of the Seahorse XFe96 Extracellular Flux Analyzer. Dose-response curves for BAC-C16 (R2 = 0.93; P = 0.001) and Cd (R2 = 0.98; P = 0.001) were created. Furthermore, a strong, positive correlation was evidenced between C. elegans oxygen consumption rate and a commonly used, ecologically relevant endpoint of toxicity (growth inhibition) for BAC-C16 (R2 = 0.93; P = 0.0001) and Cd (R2 = 0.91; P = 0.0001). The data presented in this study show that C. elegans oxygen consumption rate can be used as a promising functional measurement of toxicity.
Collapse
Affiliation(s)
- G Du Preez
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Agricultural Research Council - Institute for Tropical and Subtropical Crops, Private Bag X11208, Nelspruit, 1200, South Africa.
| | - H Fourie
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - M Daneel
- Agricultural Research Council - Institute for Tropical and Subtropical Crops, Private Bag X11208, Nelspruit, 1200, South Africa
| | - H Miller
- Human Metabolomics, Faculty of Natural Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - S Höss
- Ecossa, Giselastrasse 6, 82319, Starnberg, Germany
- University of Bielefeld, Department of Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| | - C Ricci
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, South Africa
- Pediatric Epidemiology, Department of Pediatrics, University Medicine Leipzig, Leipzig, Germany
| | - G Engelbrecht
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - M Zouhar
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Kamycka 129, 165 21, Prague, Czech Republic
| | - V Wepener
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Bravo FV, Da Silva J, Chan RB, Di Paolo G, Teixeira-Castro A, Oliveira TG. Phospholipase D functional ablation has a protective effect in an Alzheimer's disease Caenorhabditis elegans model. Sci Rep 2018; 8:3540. [PMID: 29476137 PMCID: PMC5824944 DOI: 10.1038/s41598-018-21918-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Phospholipase D (PLD) is a key player in the modulation of multiple aspects of cell physiology and has been proposed as a therapeutic target for Alzheimer's disease (AD). Here, we characterize a PLD mutant, pld-1, using the Caenorhabditis elegans animal model. We show that pld-1 animals present decreased phosphatidic acid levels, that PLD is the only source of total PLD activity and that pld-1 animals are more sensitive to the acute effects of ethanol. We further show that PLD is not essential for survival or for the normal performance in a battery of behavioral tests. Interestingly, pld-1 animals present both increased size and lipid stores levels. While ablation of PLD has no important effect in worm behavior, its ablation in an AD-like model that overexpresses amyloid-beta (Aβ), markedly improves various phenotypes such as motor tasks, prevents susceptibility to a proconvulsivant drug, has a protective effect upon serotonin treatment and reverts the biometric changes in the Aβ animals, leading to the normalization of the worm body size. Overall, this work proposes the C. elegans model as a relevant tool to study the functions of PLD and further supports the notion that PLD has a significant role in neurodegeneration.
Collapse
Affiliation(s)
- Francisca Vaz Bravo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, 10032, USA
- Denali Therapeutics Inc., South San Francisco, CA, 94080, USA
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Guo Y, Xun Z, Coffman SR, Chen F. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection. Front Microbiol 2017; 8:933. [PMID: 28611740 PMCID: PMC5446984 DOI: 10.3389/fmicb.2017.00933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/08/2017] [Indexed: 01/19/2023] Open
Abstract
The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Life Science, Peking UniversityBeijing, China
| | - Zhe Xun
- Central Laboratory, Peking University School of StomatologyBeijing, China
| | | | - Feng Chen
- Central Laboratory, Peking University School of StomatologyBeijing, China
| |
Collapse
|
9
|
Al-Amin M, Kawasaki I, Gong J, Shim YH. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans. Mol Cells 2016; 39:163-8. [PMID: 26743903 PMCID: PMC4757805 DOI: 10.14348/molcells.2016.2298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022] Open
Abstract
Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.
Collapse
Affiliation(s)
- Mohammad Al-Amin
- Department of Bioscience and Biotechnology and Institute of KU Bio-technology, Konkuk University, Seoul 143-701,
Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology and Institute of KU Bio-technology, Konkuk University, Seoul 143-701,
Korea
| | - Joomi Gong
- Department of Bioscience and Biotechnology and Institute of KU Bio-technology, Konkuk University, Seoul 143-701,
Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology and Institute of KU Bio-technology, Konkuk University, Seoul 143-701,
Korea
| |
Collapse
|
10
|
Husson SJ, Moyson S, Valkenborg D, Baggerman G, Mertens I. Proteomics applications in Caenorhabditis elegans research. Biochem Biophys Res Commun 2015; 468:519-24. [DOI: 10.1016/j.bbrc.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
|
11
|
Min H, Kawasaki I, Gong J, Shim YH. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol Cells 2015; 38:236-42. [PMID: 25591395 PMCID: PMC4363723 DOI: 10.14348/molcells.2015.2282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Abstract
Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority (86.1 ± 3.4%) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative micro-array, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae.
Collapse
Affiliation(s)
- Hyemin Min
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | - Joomi Gong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701,
Korea
- Institute of KU Biotechnology, Konkuk University, Seoul 143-701,
Korea
| |
Collapse
|
12
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|