1
|
Chen X, Li W. Isoflucypram cardiovascular toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147529. [PMID: 33991914 DOI: 10.1016/j.scitotenv.2021.147529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Isoflucypram belongs to the new generation of succinate dehydrogenase inhibitor (SDHI) fungicides that are commonly used in crop fungal disease control. Evidence indicates that isoflucypram poses a potential risk to aquatic organisms. However, the effects of isoflucypram during early embryogenesis are not fully understood. In the present study, zebrafish embryos were exposed to 0.025, 0.25, or 2.5 μM isoflucypram for three days. Isoflucypram caused severe developmental abnormalities (yolk sac edema, pericardial edema, and blood clotting clustering), hatching delay, and decreased heart rates in zebrafish. The expression levels of cardiac-specific genes (nkx2.5, myh7, myl7, and myh6) and erythropoiesis-related genes (gata1a, hbbe1, hbbe2, and alas2) were disrupted after isoflucypram exposure. Furthermore, enrichment analysis indicated that most of the differentially expressed genes (DEGs) were enriched in heart development or hemopoiesis processes. Overall, these findings suggest that exposure to isoflucypram is associated with developmental and cardiovascular toxicity in zebrafish.
Collapse
Affiliation(s)
- Xin Chen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
2
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
3
|
Yoo KW, Maddirevula S, Kumar A, Ro H, Huh TL, Rhee M. Sinup is essential for the integrity of centrosomes and mitotic spindles in zebrafish embryos. Anim Cells Syst (Seoul) 2017; 21:93-99. [PMID: 30460056 PMCID: PMC6138333 DOI: 10.1080/19768354.2017.1308438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.
Collapse
Affiliation(s)
- Kyeong-Won Yoo
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ajeet Kumar
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tae-Lin Huh
- College of Natural Sciences, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Myungchull Rhee
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
An D, Lessard SJ, Toyoda T, Lee MY, Koh HJ, Qi L, Hirshman MF, Goodyear LJ. Overexpression of TRB3 in muscle alters muscle fiber type and improves exercise capacity in mice. Am J Physiol Regul Integr Comp Physiol 2014; 306:R925-33. [PMID: 24740654 DOI: 10.1152/ajpregu.00027.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests that TRB3, a mammalian homolog of Drosophila tribbles, plays an important role in cell growth, differentiation, and metabolism. In the liver, TRB3 binds and inhibits Akt activity, whereas in adipocytes, TRB3 upregulates fatty acid oxidation. In cultured muscle cells, TRB3 has been identified as a potential regulator of insulin signaling. However, little is known about the function and regulation of TRB3 in skeletal muscle in vivo. In the current study, we found that 4 wk of voluntary wheel running (6.6 ± 0.4 km/day) increased TRB3 mRNA by 1.6-fold and protein by 2.5-fold in the triceps muscle. Consistent with this finding, muscle-specific transgenic mice that overexpress TRB3 (TG) had a pronounced increase in exercise capacity compared with wild-type (WT) littermates (TG: 1,535 ± 283; WT: 644 ± 67 joules). The increase in exercise capacity in TRB3 TG mice was not associated with changes in glucose uptake or glycogen levels; however, these mice displayed a dramatic shift toward a more oxidative/fatigue-resistant (type I/IIA) muscle fiber type, including threefold more type I fibers in soleus muscles. Skeletal muscle from TRB3 TG mice had significantly decreased PPARα expression, twofold higher levels of miR208b and miR499, and corresponding increases in the myosin heavy chain isoforms Myh7 and Myb7b, which encode these microRNAs. These findings suggest that TRB3 regulates muscle fiber type via a peroxisome proliferator-activated receptor-α (PPAR-α)-regulated miR499/miR208b pathway, revealing a novel function for TRB3 in the regulation of skeletal muscle fiber type and exercise capacity.
Collapse
Affiliation(s)
- Ding An
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Sarah J Lessard
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Taro Toyoda
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Min-Young Lee
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Ho-Jin Koh
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Ling Qi
- Salk Institute, San Diego, California
| | | | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|