1
|
Li H, Zhang F, Zhao J, Bai G, Amand PS, Bernardo A, Ni Z, Sun Q, Su Z. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1867-1877. [PMID: 35357527 DOI: 10.1007/s00122-022-04080-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
A novel major QTL for FHB resistance was mapped to a 6.8 Mb region on chromosome 2D in a Chinese wheat cultivar Ji5265, and diagnostic KASP markers were developed for detecting it in a worldwide wheat collection. Fusarium head blight (FHB) is a serious disease in wheat (Triticum aestivum L.) and causes significant reductions in grain yield and quality worldwide. Breeding for FHB resistance is the most effective strategy to minimize the losses caused by FHB; therefore, identification of major quantitative trait loci (QTLs) conferring FHB resistance and development of diagnostic markers for the QTLs are prerequisites for marker-assisted selection (MAS). Ji5265 is a Chinese wheat cultivar resistant to FHB in multiple environments. An F6 population of 179 recombinant inbred lines (RILs) was developed from Ji5265 × Wheaton. The population was genotyped by genotyping-by-sequencing (GBS) and phenotyped for FHB Type II resistance in greenhouses. A major QTL, designated as QFhb-2DL, was mapped in a 6.8 Mb region between the markers GBS10238 and GBS12056 on the long arm of chromosome 2D in Ji5265 and explained ~ 30% of the phenotypic variation for FHB resistance. The effect of QFhb-2DL on FHB resistance was validated using near-isogenic lines (NILs) derived from residual heterozygotes from an F6 RIL of Ji5265 × Wheaton. The two flanking markers were converted into Kompetitive allele-specific PCR (KASP) markers (KASP10238 and KASP12056) and validated to be diagnostic in a collection of 2,065 wheat accessions. These results indicate that QFhb-2DL is a novel major QTL for resistance to FHB spread within a spike (Type II) and the two KASP markers can be used for MAS to improve wheat FHB resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hanwen Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Fuping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA.
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Zhongfu Ni
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Zhenqi Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
3
|
Kaewcheenchai R, Vejchasarn P, Hanada K, Shirai K, Jantasuriyarat C, Juntawong P. Genome-Wide Association Study of Local Thai Indica Rice Seedlings Exposed to Excessive Iron. PLANTS 2021; 10:plants10040798. [PMID: 33921675 PMCID: PMC8073664 DOI: 10.3390/plants10040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Excess soluble iron in acidic soil is an unfavorable environment that can reduce rice production. To better understand the tolerance mechanism and identify genetic loci associated with iron toxicity (FT) tolerance in a highly diverse indica Thai rice population, a genome-wide association study (GWAS) was performed using genotyping by sequencing and six phenotypic data (leaf bronzing score (LBS), chlorophyll content, shoot height, root length, shoot biomass, and root dry weight) under both normal and FT conditions. LBS showed a high negative correlation with the ratio of chlorophyll content and shoot biomass, indicating the FT-tolerant accessions can regulate cellular homeostasis when encountering stress. Sixteen significant single nucleotide polymorphisms (SNPs) were identified by association mapping. Validation of candidate SNP using other FT-tolerant accessions revealed that SNP:2_21262165 might be associated with tolerance to FT; therefore, it could be used for SNP marker development. Among the candidate genes controlling FT tolerance, RAR1 encodes an innate immune responsive protein that links to cellular redox homeostasis via interacting with abiotic stress-responsive Hsp90. Future research may apply the knowledge obtained from this study in the molecular breeding program to develop FT-tolerant rice varieties.
Collapse
Affiliation(s)
- Reunreudee Kaewcheenchai
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Rice Department, Chatuchak Bangkok, 10900, Thailand;
| | | | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan; (K.H.); (K.S.)
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan; (K.H.); (K.S.)
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (R.K.); (C.J.)
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
4
|
Katsuyama Y, Doi M, Shioya S, Hane S, Yoshioka M, Date S, Miyahara C, Ogawa T, Takada R, Okumura H, Ikusawa R, Kitajima S, Oda K, Sato K, Tanaka Y, Tezuka T, Mino M. The role of chaperone complex HSP90-SGT1-RAR1 as the associated machinery for hybrid inviability between Nicotiana gossei Domin and N. tabacum L. Gene 2021; 776:145443. [PMID: 33484759 DOI: 10.1016/j.gene.2021.145443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Two cultured cell lines (GTH4 and GTH4S) of a Nicotiana interspecific F1 hybrid (N. gossei × N. tabacum) were comparatively analyzed to find genetic factors related to hybrid inviability. Both cell lines proliferated at 37 °C, but after shifting to 26 °C, GTH4 started to die similar to the F1 hybrid seedlings, whereas GTH4S survived. As cell death requires de novo expression of genes and proteins, we compared expressed protein profiles between the two cell lines, and found that NgSGT1, a cochaperone of the chaperone complex (HSP90-SGT1-RAR1), was expressed in GTH4 but not in GTH4S. Agrobacterium-mediated transient expression of NgSGT1, but not NtSGT1, induced cell death in leaves of N. tabacum, suggesting its possible role in hybrid inviability. Cell death in N. tabacum was also induced by transient expression of NgRAR1, but not NtRAR1. In contrast, transient expression of any parental combinations of three components revealed that NgRAR1 promoted cell death, whereas NtRAR1 suppressed it in N. tabacum. A specific inhibitor of HSP90, geldanamycin, inhibited the progression of hypersensitive response-like cell death in GTH4 and leaf tissue after agroinfiltration. The present study suggested that components of the chaperone complex are involved in the inviability of Nicotiana interspecific hybrid.
Collapse
Affiliation(s)
- Yushi Katsuyama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Mizuho Doi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sachi Shioya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sanae Hane
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Momoko Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shuichi Date
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chika Miyahara
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Tomomichi Ogawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ryo Takada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hanako Okumura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Rie Ikusawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama, 7549-1 Yoshikawa, Kibi Chuou-chou, Kaga-gun, Okayama 716-1241, Japan
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshikazu Tanaka
- Biotechnology Division Research & Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Ngatani, Tsuruga, Fukui 914-0135, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
5
|
Panthapulakkal Narayanan S, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep 2020; 10:14918. [PMID: 32913218 PMCID: PMC7483469 DOI: 10.1038/s41598-020-71851-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
6
|
Tang J, Wang Y, Yin W, Dong G, Sun K, Teng Z, Wu X, Wang S, Qian Y, Pan X, Qian Q, Chu C. Mutation of a Nucleotide-Binding Leucine-Rich Repeat Immune Receptor-Type Protein Disrupts Immunity to Bacterial Blight. PLANT PHYSIOLOGY 2019; 181:1295-1313. [PMID: 31431512 PMCID: PMC6836841 DOI: 10.1104/pp.19.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/11/2019] [Indexed: 05/10/2023]
Abstract
Most characterized plant resistance proteins belong to the nucleotide-binding domain and Leu-rich repeat-containing (NLR) family. NLRs are present in an auto-inhibited state in the absence of specific pathogens, while gain-of-function mutations in NLRs usually cause autoimmunity. Here, we show that a gain-of-function mutation, weaker defense (wed), which caused a Phe-to-Leu substitution in the nucleotide-binding domain of a typical NLR in rice (Oryza sativa), led to enhanced susceptibility to Xanthomonas oryzae pv. Oryzae The unexpected accumulation of salicylic acid (SA), along with downregulation of NONEXPRESSOR OF PR1 (NPR1), in wed indicates the potential presence of a feedback regulation loop of SA biosynthesis in rice. Epistasis analyses illustrated that SA accumulation and the NLR-associated components RAR1, OsRac1, and PhyB are dispensable for the wed phenotypes. Intriguingly, besides pattern-triggered immunity, effector-triggered immunity conferred by different resistance proteins, including Xa3/Xa26, Xa4, and Xa21, was also disturbed by wed to a certain extent, indicating the existence of shared regulatory mechanisms for various defense systems. The identification of wed therefore provides a unique system for genetic dissection of shared immune signaling pathways activated by different types of immune receptors.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Teng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xujiang Wu
- Key Laboratory of Plant Functional Genomics of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shimei Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou 213125, China
| | - Xuebiao Pan
- Key Laboratory of Plant Functional Genomics of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang Q, Ma C, Zhang Y, Gu Z, Li W, Duan X, Wang S, Hao L, Wang Y, Wang S, Li T. A Single-Nucleotide Polymorphism in the Promoter of a Hairpin RNA Contributes to Alternaria alternata Leaf Spot Resistance in Apple ( Malus × domestica). THE PLANT CELL 2018; 30:1924-1942. [PMID: 30065047 PMCID: PMC6139694 DOI: 10.1105/tpc.18.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 05/04/2023]
Abstract
Apple leaf spot caused by the Alternaria alternata f. sp mali (ALT1) fungus is one of the most devastating diseases of apple (Malus × domestica). We identified a hairpin RNA (hpRNA) named MdhpRNA277 that produces small RNAs and is induced by ALT1 infection in 'Golden Delicious' apple. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five resistance (R) genes that are expressed at high levels in resistant apple variety 'Hanfu' and at low levels in susceptible variety 'Golden Delicious' following ALT1 infection. MdhpRNA277 was strongly induced in 'Golden Delicious' but not 'Hanfu' following ALT1 inoculation. MdhpRNA277 promoter activity was much stronger in inoculated 'Golden Delicious' versus 'Hanfu'. We identified a single-nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between 'Golden Delicious' (pMdhpRNA277-GD) and 'Hanfu' (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF Transgenic 'GL-3' apple expressing pMdhpRNA277-GD:MdhpRNA277 was more susceptible to ALT1 infection than plants expressing pMdhpRNA277-HF:MdhpRNA277 due to induced mdm-siR277 accumulation and reduced expression of the five target R genes. We confirmed that the SNP in pMdhpRNA277 is associated with A. alternata leaf spot resistance by crossing. This SNP could be used as a marker to distinguish between apple varieties that are resistant or susceptible to A. alternata leaf spot.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuwei Duan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuanhua Wang
- Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, Jiangsu 212400, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TDM, Felizatti HL, Campos MDA, Machado MA. Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:386-398. [PMID: 29125028 DOI: 10.1094/mpmi-05-17-0112-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Collapse
Affiliation(s)
| | - Heros José Máximo
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | - Tiago Silva Oliveira
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | | | - Henrique Leme Felizatti
- 2 Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas-SP, Brazil; and
| | | | | |
Collapse
|
9
|
So KK, Chung YJ, Kim JM, Kim BT, Park SM, Kim DH. Identification of a Polyketide Synthase Gene in the Synthesis of Phleichrome of the Phytopathogenic Fungus Cladosporium phlei. Mol Cells 2015; 38:1105-10. [PMID: 26612679 PMCID: PMC4697002 DOI: 10.14348/molcells.2015.0208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022] Open
Abstract
Phleichrome, a pigment produced by the phytopathogenic fungus Cladosporium phlei, is a fungal perylenequinone whose photodynamic activity has been studied intensively. To determine the biological function of phleichrome and to engineer a strain with enhanced production of phleichrome, we identified the gene responsible for the synthesis of phleichrome. Structural comparison of phleichrome with other fungal perylenequinones suggested that phleichrome is synthesized via polyketide pathway. We recently identified four different polyketide synthase (PKS) genes encompassing three major clades of fungal PKSs that differ with respect to reducing conditions for the polyketide product. Based on in silico analysis of cloned genes, we hypothesized that the non-reducing PKS gene, Cppks1, is involved in phleichrome biosynthesis. Increased accumulation of Cppks1 transcript was observed in response to supplementation with the application of synthetic inducer cyclo-(l-Pro-l-Phe). In addition, heterologous expression of the Cppks1 gene in Cryphonectria parasitica resulted in the production of phleichrome. These results provide convincing evidence that the Cppks1 gene is responsible for the biosynthesis of phleichrome.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756,
Korea
| | - Yun-Jo Chung
- Physical Lab., Center for University-wide Research Facilities, Chonbuk National University, Jeonju 561-756,
Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan 570-749,
Korea
| | - Beom-Tae Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756,
Korea
| | - Seung-Moon Park
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756,
Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756,
Korea
| |
Collapse
|