1
|
Sokolowski I, Kucharska-Lusina A, Miller E, Poplawski T, Majsterek I. Exploring the Gene Expression and Plasma Protein Levels of HSP90, HSP60, and GDNF in Multiple Sclerosis Patients and Healthy Controls. Curr Issues Mol Biol 2024; 46:11668-11680. [PMID: 39451573 PMCID: PMC11505768 DOI: 10.3390/cimb46100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by immune-mediated inflammation and neurodegeneration in the central nervous system (CNS). In this study; we aimed to investigate the gene expression and plasma protein levels of three neuroprotective genes-heat shock proteins (HSP90 and HSP60) and glial cell line-derived neurotrophic factor (GDNF)-in MS patients compared to healthy controls. Forty patients with relapsing-remitting MS and 40 healthy volunteers participated in this study. Gene expression was measured using reverse transcription quantitative real-time PCR, and protein levels were assessed via ELISA. The results showed a significant increase in HSP90 (1.7-fold) and HSP60 (2-fold) gene expression in MS patients compared to controls, along with corresponding increases in protein levels (1.5-fold for both HSP90 and HSP60). In contrast, GDNF gene expression and protein levels were significantly reduced in MS patients, with a 7-fold decrease in gene expression and a 1.6-fold reduction in protein levels. Notably, a non-linear relationship between GDNF gene expression and protein concentration was observed in MS patients, suggesting complex regulatory mechanisms influencing GDNF in the disease. The upregulation of HSP90 and HSP60 in MS highlights their roles in immune regulation and stress responses, while the reduction in GDNF indicates impaired neuroprotection. These findings suggest that HSP90, HSP60, and GDNF could serve as biomarkers for disease progression and as potential therapeutic targets in MS, offering promising avenues for future research and treatment development.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Tomasz Poplawski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.); (I.M.)
| |
Collapse
|
2
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
3
|
Okada S, Furuya M, Fukui-Kaneshige A, Nakanishi H, Tani H, Sasai K. HSP110 expression in canine mammary gland tumor and its correlation with histopathological classification and grade. Vet Immunol Immunopathol 2020; 232:110171. [PMID: 33385709 DOI: 10.1016/j.vetimm.2020.110171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/07/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) play critical roles as molecular chaperones, thereby promoting cellular homeostasis. HSPs are overexpressed in many types of human tumors and their serum concentration is elevated in cancer patients. Recent studies have suggested that HSPs may promote tumorigenesis via interactions with tumor-related proteins. There are only a few studies that address the expression of HSPs in canine tumors. In our previous study, we identified elevated levels of HSP110 expression in canine mammary gland tumors (cMGTs). In this study, we examined both serum concentrations and tissue expression of HSP110 in dogs with cMGT. We found that serum HSP110 concentrations were not significantly different in a comparison between dogs with cMGT (3.44 ± 1.27 μg/mL) and healthy controls (3.23 ± 1.18 μg/mL). By contrast, significant differences in levels of HSP110 expression were identified in comparisons between simple carcinoma and benign mixed tumor (p = 0.001), simple carcinoma and non-neoplastic lesions (p < 0.001), complex carcinoma and benign mixed tumor (p = 0.015), complex carcinoma and non-neoplastic lesions (p < 0.001), simple adenoma and benign mixed tumor (p = 0.041), and simple adenoma and non-neoplastic lesions (p = 0.007). Similarly, significantly different levels of HSP110 expression were identified when comparing grade Ⅲ with non-neoplastic lesion (p = 0.026), grade Ⅱ with benign tumor (p = 0.015), grade Ⅱ with non-neoplastic lesion (p < 0.001), and grade Ⅰ with non-neoplastic lesion (p < 0.001). Taken together, our results indicate that expression of HSP110 correlates with the malignancy in this cohort of dogs diagnosed with cMGT. These findings also suggest that HSP110 is associated with tumorigenesis and the relative malignancy of cMGT.
Collapse
Affiliation(s)
- Satoru Okada
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | - Ayano Fukui-Kaneshige
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hitoshi Nakanishi
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
4
|
Yuste-Calvo C, López-Santalla M, Zurita L, Cruz-Fernández CF, Sánchez F, Garín MI, Ponz F. Elongated Flexuous Plant Virus-Derived Nanoparticles Functionalized for Autoantibody Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1438. [PMID: 31658770 PMCID: PMC6835482 DOI: 10.3390/nano9101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Nanoparticles derived from the elongated flexuous capsids of Turnip mosaic virus (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis. The functionalized Hsp60-VLPs showed their significant increase in sensing potency when compared to monoclonal antibody detection of the peptide in a conventional immunoassay. Additionally, the developed Hsp60-VLPs allowed the detection of autoantibodies against the Hsp60 peptide in an in vivo mouse model of dextran sodium sulfate (DSS)-induced colitis. The detection of minute amounts of the autoantibodies allowed us to perform the analysis of their evolution during the progression of the disease. The anti-Hsp60 autoantibody levels in the sera of the inflamed mice went down during the induction phase of the disease. Increased levels of the anti-HSP60 autoantibodies were detected during the resolution phase of the disease. An extension of a previously proposed model for the involvement of Hsp60 in inflammatory processes is considered, incorporating a role for Hsp60 autoantibodies. This, and related models, can now be experimentally tested thanks to the autoantibody detection hypersensitivity provided by the functionalized VLPs.
Collapse
Affiliation(s)
- Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Mercedes López-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Lucía Zurita
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - César F Cruz-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Marina I Garín
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, Spain.
- Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040 Madrid, Spain.
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38. Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
5
|
Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0522. [PMID: 29203707 DOI: 10.1098/rstb.2016.0522] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| |
Collapse
|
6
|
Treatment response to etanercept in methotrexate refractory juvenile idiopathic arthritis: an analysis of predictors and long-term outcomes. Clin Rheumatol 2017; 36:1997-2004. [PMID: 28540607 DOI: 10.1007/s10067-017-3682-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/21/2017] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
Abstract
The aim of the study is to evaluate the long-term outcomes, predictors, and the role of inflammatory cytokines in methotrexate (MTx) refractory juvenile idiopathic arthritis (JIA) patients. This is a retrospective cohort study. MTx refractory JIA patients who received etanercept as their first biological agent in National Taiwan University Hospital (NTUH) were enrolled. Patients were classified into remission group, non-remission group, relapsing group, and non-relapsing group according to the criteria of disease remission and disease flares defined by Wallace et al. We compared the differences in the baseline data, therapeutic responses, time to etanercept tapering, and inflammatory cytokine (IL-12p70, TNF-α, IL-10, IL-6, and IL-1β) levels between these groups. Among the 58 patients, 30 (52%) reached remission. Seventeen of the 30 patients had episodes of disease flares. We found that more patients in the remission group achieved ACR pediatric 70 response at the fourth month after etanercept treatment (p < 0.002). When comparing the relapsing group and non-relapsing group, we found that patients were more likely to have disease flares if it took longer to achieve remission (p = 0.0008). Besides, etanercept was tapered earlier in the non-relapsing group (p = 0.0006). There was no significant difference in levels of inflammatory cytokine between groups. No parameter before treatment could be used as a single predictor of long-term outcomes. However, ACR pediatric 70 response at the fourth month after etanercept treatment might predict disease remission. Besides, patients who achieved remission more rapidly were less likely to have disease flares.
Collapse
|
7
|
Persson GR. Dental geriatrics and periodontitis. Periodontol 2000 2017; 74:102-115. [DOI: 10.1111/prd.12192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
|
8
|
Spierings J, van Eden W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford) 2016; 56:198-208. [PMID: 27411479 DOI: 10.1093/rheumatology/kew266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/24/2016] [Indexed: 11/14/2022] Open
Abstract
Autoimmune diseases, including inflammatory arthritis, are characterized by a loss of self-tolerance, leading to an excessive immune responses and subsequent ongoing inflammation. Current therapies are focused on dampening this inflammation, but a permanent state of tolerance is seldom achieved. Therefore, novel therapies that restore and maintain tolerance are needed. Tregs could be a potential target to achieve permanent immunotolerance. Activation of Tregs can be accomplished when they recognize and bind their specific antigens. HSPs are proteins present in all cells and are upregulated during inflammation. These proteins are immunogenic and can be recognized by Tregs. Several studies in animal models and in human clinical trials have shown the immunoregulatory effects of HSPs and their protective effects in inflammatory arthritis. In this review, an overview is presented of the immunomodulatory effects of several members of the HSP family in general and in inflammatory arthritis. These effects can be attributed to the activation of Tregs through cellular interactions within the immune system. The effect of HSP-specific therapies in patients with inflammatory arthritis should be explored further, especially with regard to long-term efficacy and safety and their use in combination with current therapeutic approaches.
Collapse
Affiliation(s)
- Julia Spierings
- Department of Rheumatology, Maastricht University Medical Center, Maastricht
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Kim EY, Durai M, Mia Y, Kim HR, Moudgil KD. Modulation of Adjuvant Arthritis by Cellular and Humoral Immunity to Hsp65. Front Immunol 2016; 7:203. [PMID: 27379088 PMCID: PMC4904002 DOI: 10.3389/fimmu.2016.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/10/2016] [Indexed: 12/02/2022] Open
Abstract
Heat shock proteins (Hsps) are highly conserved, and their expression is upregulated in cells by heat and other stressful stimuli. These proteins play a vital role in preserving the structural and functional integrity of cells under stress. Despite the ubiquitous expression of Hsps in an individual, the immune system is not fully tolerant to them. In fact, Hsps are highly immunogenic in nature, and immune response to these proteins is observed in various inflammatory and autoimmune diseases. Studies on the immunopathogenesis of autoimmune arthritis in the rat adjuvant arthritis (AA) model of human rheumatoid arthritis (RA) as well as observations in patients with RA and juvenile idiopathic arthritis (JIA) have unraveled immunoregulatory attributes of self-Hsp65-directed immunity. Notable features of Hsp65 immunity in AA include protection rather than disease induction following immunization of Lewis rats with self (rat)-Hsp65; the diversification of T cell response to mycobacterial Hsp65 during the course of AA and its association with spontaneous induction of response to self-Hsp65; the cross-reactive T cells recognizing foreign and self homologs of Hsp65 and their role in disease suppression in rats; the suppressive effect of antibodies to Hsp65 in AA; and the use of Hsp65, its peptides, or altered peptide ligands in controlling autoimmune pathology. The results of studies in the AA model have relevance to RA and JIA. We believe that these insights into Hsp65 immunity would not only advance our understanding of the disease process in RA/JIA, but also lead to the development of novel therapeutic approaches for autoimmune arthritis.
Collapse
Affiliation(s)
- Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Malarvizhi Durai
- Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Younus Mia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacy Services, University of Maryland Medical Center, Baltimore, MD, USA
| | - Hong R Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Chong Kun Dang Pharmaceutical Institute, Yongin-si, Korea
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
10
|
Abstract
Although heat-shock (cell stress) proteins are commonly considered as being intracellular molecular chaperones that undertake a number of cytoprotective and cellular housekeeping functions, there is now a wealth of evidence to indicate that these proteins can be released by cells via active processes. Many molecular chaperones are secreted, or exist as cell surface proteins which can act as powerful signalling agonists and also as receptors for selected ligands. Levels of heat-shock (cell stress) proteins in biological fluids are now being associated with a plethora of clinical conditions, and these proteins therefore have potential utility as biomarkers of disease and/or response to therapeutic intervention. The present article summarizes current knowledge relating to extracellular cell stress proteins as biomarkers of human disease.
Collapse
|
11
|
Märker T, Kriebel J, Wohlrab U, Burkart V, Habich C. Adipocytes from New Zealand obese mice exhibit aberrant proinflammatory reactivity to the stress signal heat shock protein 60. J Diabetes Res 2014; 2014:187153. [PMID: 24672802 PMCID: PMC3941600 DOI: 10.1155/2014/187153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 11/29/2022] Open
Abstract
Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60) induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD), New Zealand obese (NZO), and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC), interleukin 6 (IL-6), and macrophage chemoattractant protein-1 (MCP-1). Hsp60 showed specific binding to (pre-)adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s) and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-)adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-)adipocytes strongly depended on NF κ B-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Tina Märker
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Jennifer Kriebel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Ulrike Wohlrab
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- *Volker Burkart:
| | - Christiane Habich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Shimizu J, Kaneko F, Suzuki N. Skewed Helper T-Cell Responses to IL-12 Family Cytokines Produced by Antigen-Presenting Cells and the Genetic Background in Behcet's Disease. GENETICS RESEARCH INTERNATIONAL 2013; 2013:363859. [PMID: 24490076 PMCID: PMC3892938 DOI: 10.1155/2013/363859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 01/28/2023]
Abstract
Behcet's disease (BD) is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found that Th17 cells, a new helper T (Th) cell subset, were increased in patients with BD, and both Th type 1 (Th1) and Th17 cell differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell differentiation signaling pathways were associated with the onset of BD. Here, we summarize current findings on the Th cell subsets, their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production and pattern recognition receptors of macrophages/monocytes.
Collapse
Affiliation(s)
- Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Fumio Kaneko
- Department of Dermatology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Noboru Suzuki
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8511, Japan
| |
Collapse
|
13
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Cho SB, Zheng Z, Ahn KJ, Choi MJ, Cho S, Kim DY, Lee HS, Bang D. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease. Br J Dermatol 2013; 168:977-83. [PMID: 23137016 DOI: 10.1111/bjd.12128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Infectious agents, especially Streptococcus sanguinis and herpes simplex virus, have long been postulated as major triggering factors for Behçet disease (BD). OBJECTIVES To identify an anti-S. sanguinis antigen reacting with serum IgA antibody in patients with BD. METHODS We detected a target protein by proteomics analysis and evaluated serum IgA reactivity of 100 patients with BD against the identified streptococcal target protein and human heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1. Homologous epitope sequences between the streptococcal target protein and human hnRNP A2/B1 were also evaluated. RESULTS Four protein bands were detected by immunoprecipitation, and chaperonin GroEL was identified by a proteomics analysis. Reactivity of serum IgA against recombinant S. sanguinis GroEL was detected in 77 of 100 patients with BD (77%) and in 21 of 70 healthy controls (30%). In addition, reactivity of serum IgA against human recombinant hnRNP A2/B1 was seen in 79 of 100 patients with BD (79%) and in eight of 70 healthy controls (11%). Among the eight distinctive epitopes with significant homology between S. sanguinis GroEL and human hnRNP A2/B1, the serum IgA reactivity of patients with BD was markedly higher with epitope 3 (hnRNP A2/B1 peptide 33-46 and GroEL peptide 57-70) and epitope 6 (hnRNP A2/B1 peptide 177-188 and GroEL peptide 347-358). CONCLUSION We identified an S. sanguinis GroEL protein as a target of serum anti-S. sanguinis IgA antibody reactivity in patients with BD. In addition, patients with BD exhibited serum IgA reactivity against homologous epitope regions between S. sanguinis GroEL and human hnRNP A2/B1.
Collapse
Affiliation(s)
- S B Cho
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 2013. [PMID: 23199319 DOI: 10.1111/j.1365-2249.2012.04627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucosal administration of an antigen eliciting bystander suppression at the site of inflammation results in effective antigen-specific immunotherapy for autoimmune diseases. Heat shock proteins are bystander antigens that are effective in peptide-specific immunotherapy in both experimental and human autoimmune disease. The efficacy of preventive peptide immunotherapy is increased by enhancing peptide-specific immune responses with proinflammatory agents. Combining peptide-specific immunotherapy with general suppression of inflammation may improve its therapeutic effect.
Collapse
Affiliation(s)
- E Zonneveld-Huijssoon
- Department of Pediatric Immunology, Centre for Cellular and Molecular Intervention, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
16
|
Millar NL, Murrell GAC, McInnes IB. Alarmins in tendinopathy: unravelling new mechanisms in a common disease. Rheumatology (Oxford) 2013; 52:769-79. [DOI: 10.1093/rheumatology/kes409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Anraku I, Rajasuriar R, Dobbin C, Brown R, Lewin SR, Suhrbier A. Circulating heat shock protein 60 levels are elevated in HIV patients and are reduced by anti-retroviral therapy. PLoS One 2012; 7:e45291. [PMID: 23028910 PMCID: PMC3460931 DOI: 10.1371/journal.pone.0045291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/15/2012] [Indexed: 01/26/2023] Open
Abstract
Circulating heat shock protein 60 (Hsp60) and heat shock protein 10 (Hsp10) have been associated with pro- and anti-inflammatory activity, respectively. To determine whether these heat shock proteins might be associated with the immune activation seen in HIV-infected patients, the plasma levels of Hsp60 and Hsp10 were determined in a cohort of 20 HIV-infected patients before and after effective combination anti-retroviral therapy (cART). We show for the first time that circulating Hsp60 levels are elevated in HIV-infected patients, with levels significantly reduced after cART, but still higher than those in HIV-negative individuals. Hsp60 levels correlated significantly with viral load, CD4 counts, and circulating soluble CD14 and lipopolysaccharide levels. No differences or correlations were seen for Hsp10 levels. Elevated circulating Hsp60 may contribute to the immune dysfunction and non-AIDS clinical events seen in HIV-infected patients.
Collapse
Affiliation(s)
- Itaru Anraku
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Reena Rajasuriar
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | | | | | - Sharon R. Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Andreas Suhrbier
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Queensland, Australia
- * E-mail: .
| |
Collapse
|
18
|
Märker T, Sell H, Zilleßen P, Glöde A, Kriebel J, Ouwens DM, Pattyn P, Ruige J, Famulla S, Roden M, Eckel J, Habich C. Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance. Diabetes 2012; 61:615-25. [PMID: 22315307 PMCID: PMC3282817 DOI: 10.2337/db10-1574] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The stress protein heat shock protein 60 (Hsp60) induces secretion of proinflammatory mediators from murine adipocytes. This study aimed to study Hsp60 as a mediator of adipose tissue inflammation and skeletal muscle cell (SkMC) insulin sensitivity and to quantify plasma Hsp60 concentrations in lean and obese individuals. Regulation of Hsp60 release and Hsp60-induced cytokine secretion and signaling was measured in human adipocytes and SkMCs. Adipocytes exhibited higher Hsp60 release than preadipocytes and SkMCs, which was further stimulated by cytokines and Toll-like receptor (TLR)-4 activation. Hsp60 activated extracellular signal-related kinase (ERK)-1/2, Jun NH(2)-terminal kinase (JNK), p38, nuclear factor (NF)-κB, and impaired insulin-stimulated Akt phosphorylation in adipocytes. Furthermore, Hsp60 stimulated adipocytes to secrete tumor necrosis factor-α, interleukin (IL)-6, and IL-8. In SkMCs, Hsp60 activated ERK1/2, JNK, and NF-κB and inhibits insulin signaling and insulin-stimulated glucose uptake. SkMCs released IL-6, IL-8, and monocyte chemoattractant protein-1 on Hsp60 stimulation. Plasma Hsp60 was higher in obese males than in lean males and correlated positively with BMI, blood pressure, leptin, and homeostasis model assessment-insulin resistance. In summary, Hsp60 is released by human adipocytes, increased in plasma of obese humans, and induces insulin resistance. This is accompanied by activation of proinflammatory signaling in human adipocytes and SkMCs. Thus, Hsp60 might be a factor underlying adipose tissue inflammation and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Tina Märker
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henrike Sell
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Pia Zilleßen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anja Glöde
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Kriebel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Piet Pattyn
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent, Belgium
| | - Johannes Ruige
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Susanne Famulla
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Metabolic Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christiane Habich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Corresponding author: Christiane Habich,
| |
Collapse
|
19
|
Rutger Persson G. Rheumatoid arthritis and periodontitis - inflammatory and infectious connections. Review of the literature. J Oral Microbiol 2012; 4:JOM-4-11829. [PMID: 22347541 PMCID: PMC3280043 DOI: 10.3402/jom.v4i0.11829] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022] Open
Abstract
An association between oral disease/periodontitis and rheumatoid arthritis (RA) has been considered since the early 1820s. The early treatment was tooth eradication. Epidemiological studies suggest that the prevalence of RA and periodontitis may be similar and about 5% of the population are aged 50 years or older. RA is considered as an autoimmune disease whereas periodontitis has an infectious etiology with a complex inflammatory response. Both diseases are chronic and may present with bursts of disease activity. Association studies have suggested odds ratios of having RA and periodontitis varying from 1.8:1 (95% CI: 1.0–3.2, NS) to 8:1 (95% CI: 2.9–22.1, p<0.001). Genetic factors are driving the host responses in both RA and periodontitis. Tumor necrosis factor-α, a proinflammatory cytokine, regulates a cascade of inflammatory events in both RA and periodontitis. Porphyromonas gingivalis is a common pathogen in periodontal infection. P. gingivalis has also been identified in synovial fluid. The specific abilities of P. gingivalis to citrullinate host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains can induce autoimmune responses in RA through development of anticyclic citrullinated peptide antibodies. In addition, P. gingivalis carries heat shock proteins (HSPs) that may also trigger autoimmune responses in subjects with RA. Data suggest that periodontal therapies combined with routine RA treatments further improve RA status.
Collapse
Affiliation(s)
- G Rutger Persson
- Department of Periodontics and Department of Oral Medicine, University of Washington, Seattle, WA, USA; Oral Health Sciences, University of Kristianstad, Kristianstad, Sweden; and Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|