1
|
Physical Activity, Exercise, and Sports in Individuals with Skeletal Dysplasia: What Is Known about Their Benefits? SUSTAINABILITY 2022. [DOI: 10.3390/su14084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a lack of knowledge about the practice of physical activity, exercise, and sports in people with skeletal dysplasia (SD). This study aimed to characterize the physical fitness of people with SD; investigate the benefits of physical activity, exercise, or sports programs for people with SD; identify the adapted physical activities that can be prescribed to individuals with SD; and identify the most common and effective structural characteristics and guidelines for the evaluation of individuals with SD and corresponding activity prescriptions. Electronic searches were carried out in the PubMed, Scopus, SPORTDiscus, Psycinfo, and Web of Science databases in October 2021 and March 2022 and included papers published until 3 March 2022. The search strategy terms used were “dwarfism”, “dwarf”, “skeletal dysplasia”, “achondroplasia”, “pseudoachondroplasia”, “hypochondroplasia”, “campomelic dysplasia”, “hair cartilage hypoplasia”, “x-linked hypophosphatemia”, “metaphyseal chondrodysplasia schmid type”, “multiple epiphyseal dysplasia”, “three M syndrome”, “3-M syndrome”, “hypophosphatasia”, “fibrodysplasia ossificans progressive”, “type II collagen disorders”, “type II collagenopathies”, “type II collagenopathy”, “physical activity”, “exercise”, “sport”, “training”, and “physical fitness”, with the Boolean operators “AND” or “OR”. After reading the full texts of the studies, and according to previously defined eligibility criteria, fifteen studies met the inclusion criteria; however, there was not a single intervention study with physical exercise. Several cross-sectional, review, or qualitative studies presented a set of essential aspects that future intervention studies can consider when evaluating, prescribing, and implementing physical exercise programs, as they allowed the physical characterization of the SD population. This study demonstrated an apparent scarcity in the literature of experimental studies with physical exercise implementation in the SD population.
Collapse
|
2
|
Sims D, Onambélé-Pearson G, Burden A, Payton C, Morse C. Whole-body and segmental analysis of body composition in adult males with achondroplasia using dual X-ray absorptiometry. PLoS One 2019; 14:e0213806. [PMID: 30889196 PMCID: PMC6424418 DOI: 10.1371/journal.pone.0213806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/15/2019] [Indexed: 12/05/2022] Open
Abstract
Achondroplasia is a condition characterized by a genetic mutation affecting long bone endplate development. Current data suggests that the bone mineral content (BMC) and bone mineral density (BMD) of achondroplasic populations are below age matched individuals of average stature (controls). Due to the disproportionate limb-to-torso length compared to controls however, the lower BMC and BMD may be nullified when appropriately presented. The aim of this study was to measure whole-body and segmental body composition in adult males with achondroplasia (N = 10, 22 ±3 yrs), present data relative to whole-body and whole-limb values and compare all values to age matched controls (N = 17, 22 ±2 yrs). Dual X-ray absorptiometry (DEXA) was used to measure the in vivo mass of the whole-body and 15 segments, from which BMD, BMC, fat free mass (FFM) and body fat mass were measured. BMC of lumbar vertebrae (L1-4) was also measured and presented as a volumetric BMD (BMDVOL). The achondroplasic group had less BMC, BMD and FFM, and more body fat mass than controls as a whole-body measure. The lower achondroplasic BMC and BMD was somewhat nullified when presented relative to whole-body and whole-limb values respectively. There was no difference in lumbar BMDVOL between groups. Whole-body BMD measures presented the achondroplasic group as 'osteopenic'. When relative to whole-limb measures however, achondroplasic BMD descriptions were normal. Further work is needed to create a body composition database for achondroplasic population's, or for clinicians to present achondroplasic body composition values relative to the whole-limb.
Collapse
Affiliation(s)
- David Sims
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, England
| | - Gladys Onambélé-Pearson
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, England
| | - Adrian Burden
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, England
| | - Carl Payton
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, England
| | - Christopher Morse
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, England
| |
Collapse
|
3
|
Blauwet CA, Brook EM, Tenforde AS, Broad E, Hu CH, Abdu-Glass E, Matzkin EG. Low Energy Availability, Menstrual Dysfunction, and Low Bone Mineral Density in Individuals with a Disability: Implications for the Para Athlete Population. Sports Med 2018; 47:1697-1708. [PMID: 28213754 DOI: 10.1007/s40279-017-0696-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low energy availability, functional hypothalamic amenorrhea, and low bone mineral density are three interrelated conditions described in athletic women. Although described as the female athlete triad (Triad), males experience similar health concerns. The literature suggests that individuals with a disability may experience altered physiology related to these three conditions when compared with the able-bodied population. The goal of this review is to describe the unique implications of low energy availability, low bone mineral density, and, in females, menstrual dysfunction in individuals with a disability and their potential impact on the para athlete population. A literature review was performed linking search terms related to the three conditions with six disability categories that are most represented in para sport. Few articles were found that directly pertained to athletes, therefore, the review additionally characterizes literature found in a non-athlete population. Review of the available literature in athletes suggests that both male and female athletes with spinal cord injury demonstrate risk factors for low energy availability. Bone mineral density may also show improvements for wheelchair athletes or athletes with hemiplegic cerebral palsy when compared with a disabled non-athlete population. However, the prevalence of the three conditions and implications on the health of para athletes is largely unknown and represents a key gap in the sports medicine literature. As participation in para sport continues to increase, further research is needed to understand the impact of these three interrelated health concerns for athletes with a disability, accompanied by educational initiatives targeting athletes, coaches, and health professionals.
Collapse
Affiliation(s)
- Cheri A Blauwet
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Harvard Medical School, 300 1st Avenue, Charlestown, Boston, MA, 02129, USA. .,International Paralympic Committee (IPC) Medical Committee, Bonn, Germany.
| | - Emily M Brook
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Tenforde
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Harvard Medical School, 300 1st Avenue, Charlestown, Boston, MA, 02129, USA
| | | | - Caroline H Hu
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Elizabeth G Matzkin
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Shazeeb MS, Cox MK, Gupta A, Tang W, Singh K, Pryce CT, Fogle R, Mu Y, Weber WD, Bangari DS, Ying X, Sabbagh Y. Skeletal Characterization of the Fgfr3 Mouse Model of Achondroplasia Using Micro-CT and MRI Volumetric Imaging. Sci Rep 2018; 8:469. [PMID: 29323153 PMCID: PMC5765052 DOI: 10.1038/s41598-017-18801-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 01/16/2023] Open
Abstract
Achondroplasia, the most common form of dwarfism, affects more than a quarter million people worldwide and remains an unmet medical need. Achondroplasia is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene which results in over-activation of the receptor, interfering with normal skeletal development leading to disproportional short stature. Multiple mouse models have been generated to study achondroplasia. The characterization of these preclinical models has been primarily done with 2D measurements. In this study, we explored the transgenic model expressing mouse Fgfr3 containing the achondroplasia mutation G380R under the Col2 promoter (Ach). Survival and growth rate of the Ach mice were reduced compared to wild-type (WT) littermates. Axial skeletal defects and abnormalities of the sternebrae and vertebrae were observed in the Ach mice. Further evaluation of the Ach mouse model was performed by developing 3D parameters from micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI). The 3-week-old mice showed greater differences between the Ach and WT groups compared to the 6-week-old mice for all parameters. Deeper understanding of skeletal abnormalities of this model will help guide future studies for evaluating novel and effective therapeutic approaches for the treatment of achondroplasia.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Megan K Cox
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Anurag Gupta
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Wen Tang
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Kuldeep Singh
- Global Discovery Pathology, Translational In-vivo Models, Sanofi R&D Global Research Platform, 5 The Mountain Road, Framingham, MA, 01701, USA
| | - Cynthia T Pryce
- Translational Sciences, Sanofi R&D Global Research Platform, 49 New York avenue, Framingham, MA, 01701, United States
| | - Robert Fogle
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - Ying Mu
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States
| | - William D Weber
- Translational Sciences, Sanofi R&D Global Research Platform, 49 New York avenue, Framingham, MA, 01701, United States
| | - Dinesh S Bangari
- Global Discovery Pathology, Translational In-vivo Models, Sanofi R&D Global Research Platform, 5 The Mountain Road, Framingham, MA, 01701, USA
| | - Xiaoyou Ying
- Global Bioimaging Department, Translational In-vivo Models, Sanofi R&D Global Research Platform, 49 New York Avenue, Framingham, MA, 01701, United States.
| | - Yves Sabbagh
- Rare Diseases, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA.
| |
Collapse
|
5
|
Matsushita M, Kitoh H, Mishima K, Kadono I, Sugiura H, Hasegawa S, Nishida Y, Ishiguro N. Low bone mineral density in achondroplasia and hypochondroplasia. Pediatr Int 2016; 58:705-8. [PMID: 26716907 DOI: 10.1111/ped.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/08/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Achondroplasia (ACH) and hypochondroplasia (HCH) are the most common form of short-limb skeletal dysplasias caused by activated fibroblast growth factor receptor 3 (FGFR3) signaling. Although decreased bone mass was reported in gain-of-function mutation in Fgfr3 mice, both disorders have never been described as osteoporotic. In the present study, we evaluated bone mineral density (BMD) in ACH and HCH patients. METHODS We measured spinal BMD (L1-L4) in 18 ACH and four HCH patients with an average age of 19.8 ± 7.5 years (range, 10-33 years). BMD Z-score in each individual was calculated for normalizing age and gender. Correlation between body mass index (BMI) and BMD was analyzed. Moreover, BMD and Z-score were compared between ACH patients and HCH patients. RESULTS The average BMD of ACH/HCH patients was 0.805 ± 0.141 g/cm(2) (range, 0.554-1.056 g/cm(2) ), resulting in an average Z-score of -1.1 ± 0.8 (range, -2.4 to 0.6) of the standard value. A slightly positive correlation was observed between BMI and BMD (r = 0.45; P = 0.13). There was no significant difference in BMD and Z-score between ACH and HCH patients. CONCLUSION Spinal BMD was reduced in ACH/HCH patients, and was mildly correlated with individual BMI. We should carefully monitor BMD and examine osteoporosis-related symptoms in adolescent and adult ACH/HCH patients. © 2016 Japan Pediatric Society.
Collapse
Affiliation(s)
- Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izumi Kadono
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Sugiura
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachi Hasegawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|