1
|
Li Y, Gao C, Zhao J, Zhao Z, Xie B, Zuo H, Zhang S, Dong J, Chen X, Li H, Bian Y. Screening of peptidyl arginine deiminase 4 inhibitors in traditional herbal medicines. Fitoterapia 2024; 177:106095. [PMID: 38942299 DOI: 10.1016/j.fitote.2024.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 μM to 667 μM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 μM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.
Collapse
Affiliation(s)
- Yanfeng Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Binxi Xie
- Chongqing Cigarette Factory, China Tobacco Chongqing Industrial Co, Ltd, Chongqing 400060, PR China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Hui Li
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street 2, Zhengzhou, Henan 450001, PR China.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
2
|
Zhang G, Xu J, Du D, Liu Y, Dai L, Zhao Y. Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2024; 63:914-924. [PMID: 37824204 DOI: 10.1093/rheumatology/kead545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Anti-peptidyl arginine deaminase 4 (anti-PAD4) antibody has been a subject of investigation in RA in the last two decades. This meta-analysis investigated the diagnostic values, association with disease activity and possible risk factors of anti-PAD4 antibody in rheumatoid arthritis. METHOD We searched studies from five databases up to 1 December 2022. Bivariate mixed-effect models were used to pool the diagnostic accuracy indexes, and the summary receiver operating characteristics (SROC) curve was plotted. The quality of diagnostic studies was assessed using QUADAS-2. Non-diagnostic meta-analyses were conducted using the random-effects model. Sensitivity analysis, meta-regression, subgroup analyses and Deeks' funnel plot asymmetry test were used to address heterogeneity. RESULT Finally, 24 journal articles and one letter were included. Anti-PAD4 antibody had a good diagnostic value between RA and healthy individuals, but it might be lower between RA and other rheumatic diseases. Moreover, anti-PAD4 could slightly enhance RA diagnostic sensitivity with a combination of ACPA or ACPA/RF. Anti-PAD4 antibody was positively correlated with HLA-SE and negatively correlated with ever or current smoking in patients with RA. RA patients with anti-PAD4 antibody had higher DAS28, ESR, swollen joint count (SJC) and the possibility of having interstitial lung disease (ILD) and pulmonary fibrosis compared with those without. CONCLUSION Our study suggests that anti-PAD4 antibody is a potentially useful diagnostic biomarker and clinical indicator for RA. Further mechanistic studies are required to understand the impact of HLA-SE and smoking on the production of anti-PAD4 antibody.
Collapse
Affiliation(s)
- Guangyue Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Sánchez-Tirado E, Agüí L, Sánchez-Paniagua M, González-Cortés A, López-Ruiz B, Yáñez-Sedeño P, Pingarrón JM. Serum Autoantibody Biomarkers for Management of Rheumatoid Arthritis Disease. BIOSENSORS 2023; 13:381. [PMID: 36979593 PMCID: PMC10046368 DOI: 10.3390/bios13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoimmune inflammatory disease that is characterized by the destruction of bone and production of autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPAs). The high prevalence of this disease and the need of affordable tools for its early detection led us to prepare the first electrochemical immunoplatform for the simultaneous determination of four RA biomarkers, the autoantibodies: RF, anti-peptidyl-arginine deiminase enzyme (anti-PAD4), anti-cyclic citrullinated peptide (anti-CCP), and anti-citrullinated vimentin (anti-MCV). Functionalized magnetic beads (MBs) were used to immobilize the specific antigens, and sandwich-type immunoassays were implemented for the amperometric detection of the four autoantibodies, using the horseradish peroxidase (HRP)/H2O2/hydroquinone (HQ) system. The immunoplatform was applied to the determination of the biomarkers in human serum of twenty-two patients diagnosed with RA and four healthy individuals, and the results were validated against ELISA tests and the certified values.
Collapse
Affiliation(s)
- Esther Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Marta Sánchez-Paniagua
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Araceli González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - Beatriz López-Ruiz
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fu X, Liu H, Huang G, Dai SS. The emerging role of neutrophils in autoimmune-associated disorders: effector, predictor, and therapeutic targets. MedComm (Beijing) 2021; 2:402-413. [PMID: 34766153 PMCID: PMC8554667 DOI: 10.1002/mco2.69] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are essential components of the immune system and have vital roles in the pathogenesis of autoimmune disorders. As effector cells, neutrophils promote autoimmune disease by releasing cytokines and chemokines cascades that accompany inflammation, neutrophil extracellular traps (NETs) regulating immune responses through cell-cell interactions. More recent evidence has extended functions of neutrophils. Accumulating evidence implicated neutrophils contribute to tissue damage during a broad range of disorders, involving rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary sjögren's syndrome (pSS), multiple sclerosis (MS), crohn's disease (CD), and gout. A variety of studies have reported on the functional role of neutrophils as therapeutic targets in autoimmune diseases. However, challenges and controversies in the field remain. Enhancing our understanding of neutrophils' role in autoimmune disorders may further advance the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
5
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
6
|
Karmakar U, Vermeren S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology 2021; 164:689-700. [PMID: 34478165 PMCID: PMC8561113 DOI: 10.1111/imm.13412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease without known cure that primarily affects synovial joints. RA has a prevalence of approximately 1% of the population worldwide. A vicious circle between two critical immune cell types, B cells and neutrophils, develops and promotes disease. Pathogenic anti‐citrullinated protein antibodies (ACPA) directed against a range of citrullinated epitopes are abundant in both plasma and synovial fluid of RA patients. In addition to stimulating numerous cell types, ACPA and other autoantibodies, notably rheumatoid factor, form immune complexes (ICs) that potently activate neutrophils. Attracted to the synovium by abundant chemokines, neutrophils are locally stimulated by ICs. They generate cytokines and release cytotoxic compounds including neutrophil extracellular traps (NETs), strands of decondensed chromatin decorated with citrullinated histones and granule‐derived neutrophil proteins, which are particularly abundant in the synovial fluid. In this way, neutrophils generate citrullinated epitopes and release peptidylarginine deiminase (PAD) enzymes capable of citrullinating extracellular proteins in the rheumatic joint, contributing to renewed ACPA generation. This review article focusses on the central function of citrullination, a post‐translational modification of arginine residues in RA. The discussion includes ACPA and related autoantibodies, somatic hypermutation‐mediated escape from negative selection by autoreactive B cells, promotion of the dominance of citrullinated antigens by genetic and lifestyle susceptibility factors and the vicious circle between ACPA‐producing pathogenic B cells and NET‐producing neutrophils in RA.
Collapse
Affiliation(s)
- Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 2020; 16:301-315. [PMID: 32341463 DOI: 10.1038/s41584-020-0409-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) owing to their ability to generate citrullinated proteins - the hallmark autoantigens of RA. Of the five PAD enzyme isoforms, PAD2 and PAD4 are the most strongly implicated in RA at both genetic and cellular levels, and PAD inhibitors have shown therapeutic efficacy in mouse models of inflammatory arthritis. PAD2 and PAD4 are additionally targeted by autoantibodies in distinct clinical subsets of patients with RA, suggesting anti-PAD antibodies as possible biomarkers for RA diagnosis and prognosis. This Review weighs the evidence that supports a pathogenic role for PAD enzymes in RA as both promoters and targets of the autoimmune response, as well as discussing the mechanistic and therapeutic implications of these findings in the wider context of RA pathogenesis. Understanding the origin and consequences of dysregulated PAD enzyme activity and immune responses against PAD enzymes will be important to fully comprehend the pathogenic mechanisms involved in this disease and for the development of novel strategies to treat and prevent RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pooja Naik
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon T Giles
- Division of Rheumatology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Martinez-Prat L, Palterer B, Vitiello G, Parronchi P, Robinson WH, Mahler M. Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: immunological and clinical significance, and potential for precision medicine. Expert Rev Clin Immunol 2019; 15:1073-1087. [DOI: 10.1080/1744666x.2020.1668778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Martinez-Prat
- Research and Development, Inova Diagnostics, San Diego, CA, USA
- Department of Experimental Science, Francisco de Vitoria University, Madrid, Spain
| | - Boaz Palterer
- specialist in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Gianfranco Vitiello
- resident in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Paola Parronchi
- (Allergy and Clinical Immunology), Laboratory Head, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - William H. Robinson
- (Immunology and Rheumatology), Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Geriatric Research Education and Clinical [GRECC] Division, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| |
Collapse
|
9
|
Affiliation(s)
- Craig N Morrell
- From the Aab Cardiovascular Research Institute (C.N.M., Z.T.H., D.N.P., P.M.), University of Rochester School of Medicine, Box CVRI, NY
- Department of Microbiology and Immunology (C.N.M., D.N.P.), University of Rochester School of Medicine, Box CVRI, NY
| | - Zachary T Hilt
- From the Aab Cardiovascular Research Institute (C.N.M., Z.T.H., D.N.P., P.M.), University of Rochester School of Medicine, Box CVRI, NY
| | - Daphne N Pariser
- From the Aab Cardiovascular Research Institute (C.N.M., Z.T.H., D.N.P., P.M.), University of Rochester School of Medicine, Box CVRI, NY
- Department of Microbiology and Immunology (C.N.M., D.N.P.), University of Rochester School of Medicine, Box CVRI, NY
| | - Preeti Maurya
- From the Aab Cardiovascular Research Institute (C.N.M., Z.T.H., D.N.P., P.M.), University of Rochester School of Medicine, Box CVRI, NY
| |
Collapse
|
10
|
Sorvillo N, Mizurini DM, Coxon C, Martinod K, Tilvawala R, Cherpokova D, Salinger AJ, Seward RJ, Staudinger C, Weerapana E, Shapiro NI, Costello CE, Thompson PR, Wagner DD. Plasma Peptidylarginine Deiminase IV Promotes VWF-Platelet String Formation and Accelerates Thrombosis After Vessel Injury. Circ Res 2019; 125:507-519. [PMID: 31248335 DOI: 10.1161/circresaha.118.314571] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE PAD4 (peptidylarginine deiminase type IV), an enzyme essential for neutrophil extracellular trap formation (NETosis), is released together with neutrophil extracellular traps into the extracellular milieu. It citrullinates histones and holds the potential to citrullinate other protein targets. While NETosis is implicated in thrombosis, the impact of the released PAD4 is unknown. OBJECTIVE This study tests the hypothesis that extracellular PAD4, released during inflammatory responses, citrullinates plasma proteins, thus affecting thrombus formation. METHODS AND RESULTS Here, we show that injection of r-huPAD4 in vivo induces the formation of VWF (von Willebrand factor)-platelet strings in mesenteric venules and that this is dependent on PAD4 enzymatic activity. VWF-platelet strings are naturally cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type-1 motif-13). We detected a reduction of endogenous ADAMTS13 activity in the plasma of wild-type mice injected with r-huPAD4. Using mass spectrometry and in vitro studies, we found that r-huPAD4 citrullinates ADAMTS13 on specific arginine residues and that this modification dramatically inhibits ADAMTS13 enzymatic activity. Elevated citrullination of ADAMTS13 was observed in plasma samples of patients with sepsis or noninfected patients who were elderly (eg, age >65 years) and had underlying comorbidities (eg, diabetes mellitus and hypertension) as compared with healthy donors. This shows that ADAMTS13 is citrullinated in vivo. VWF-platelet strings that form on venules of Adamts13-/- mice were immediately cleared after injection of r-huADAMTS13, while they persisted in vessels of mice injected with citrullinated r-huADAMTS13. Next, we assessed the effect of extracellular PAD4 on platelet-plug formation after ferric chloride-induced injury of mesenteric venules. Administration of r-huPAD4 decreased time to vessel occlusion and significantly reduced thrombus embolization. CONCLUSIONS Our data indicate that PAD4 in circulation reduces VWF-platelet string clearance and accelerates the formation of a stable platelet plug after vessel injury. We propose that this effect is, at least in part, due to ADAMTS13 inhibition.
Collapse
Affiliation(s)
- Nicoletta Sorvillo
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.M.M., K.M., D.C., D.D.W.)
| | - Daniella M Mizurini
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.M.M., K.M., D.C., D.D.W.)
| | - Carmen Coxon
- Target Discovery Institute, University of Oxford, NDM Research Building, Headington, United Kingdom (C.C.)
| | - Kimberly Martinod
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.M.M., K.M., D.C., D.D.W.)
| | - Ronak Tilvawala
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA (R.T., A.J.S., P.R.T.)
| | - Deya Cherpokova
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.M.M., K.M., D.C., D.D.W.)
| | - Ari J Salinger
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA (R.T., A.J.S., P.R.T.)
| | - Robert J Seward
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, MA (R.J.S., C.E.C.)
| | - Caleb Staudinger
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA
| | | | - Nathan I Shapiro
- Department of Emergency Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (N.I.S.)
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, MA (R.J.S., C.E.C.)
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA (R.T., A.J.S., P.R.T.)
| | - Denisa D Wagner
- From the Program in Cellular and Molecular Medicine (N.S., D.M.M., K.M., D.C., C.S., D.D.W.), Boston Children's Hospital, MA.,Division of Hematology/Oncology (D.D.W.), Boston Children's Hospital, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA (N.S., D.M.M., K.M., D.C., D.D.W.)
| |
Collapse
|
11
|
Peptidyl-arginine deiminase-type IV as a diagnostic and prognostic marker in rheumatoid arthritis patients. EGYPTIAN RHEUMATOLOGIST 2019. [DOI: 10.1016/j.ejr.2018.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
de Brito Rocha S, Baldo DC, Andrade LEC. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv Rheumatol 2019; 59:2. [PMID: 30657101 DOI: 10.1186/s42358-018-0042-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune/inflammatory disease affecting 0.5 to 1% of adults worldwide and frequently leads to joint destruction and disability. Early diagnosis and early and effective therapy may prevent joint damage and lead to better long-term results. Therefore, reliable biomarkers and outcome measures are needed. Refinement of the understanding of molecular pathways involved in disease pathogenesis have been achieved by combining knowledge on RA-associated genes, environmental factors and the presence of serological elements. The presence of autoantibodies is a distinctive feature of RA. Rheumatoid Factor and Anti-Citrullinated Protein Antibodies are the two most remarkable autoantibodies in RA and provide different clinical and pathophysiological information. They precede the onset of disease symptoms and predict a more severe disease course, indicating a pathogenetic role in RA. Therefore, they promote a more accurate prognosis and contribute for a better disease management. Several RA-associated autoantibody systems have been identified: Anti-Carbamylated Antibodies, Anti-BRAF, Anti-Acetylated, Anti-PAD4 antibodies and others. Hopefully, the characterization of a comprehensive array of novel autoantibody systems in RA will provide unique pathogenic insights of relevance for the development of diagnostic and prognostic approaches compatible with an effective personalized medicine.
Collapse
Affiliation(s)
- Sara de Brito Rocha
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Disciplina de Reumatologia, Rua Botucatu 740, 3o andar, São Paulo, SP, ZIP:04023-062, Brazil.
| | - Danielle Cristiane Baldo
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Disciplina de Reumatologia, Rua Botucatu 740, 3o andar, São Paulo, SP, ZIP:04023-062, Brazil
| | - Luis Eduardo Coelho Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Disciplina de Reumatologia, Rua Botucatu 740, 3o andar, São Paulo, SP, ZIP:04023-062, Brazil
| |
Collapse
|
13
|
Kawaguchi H, Matsumoto I, Osada A, Kurata I, Ebe H, Tanaka Y, Inoue A, Umeda N, Kondo Y, Tsuboi H, Ishigami A, Sumida T. Peptidyl arginine deiminase inhibition suppresses arthritis via decreased protein citrullination in joints and serum with the downregulation of interleukin-6. Mod Rheumatol 2019; 29:964-969. [PMID: 30285515 DOI: 10.1080/14397595.2018.1532545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: To explore the relevance of citrullinated proteins and anti-citrullinated protein antibodies (ACPA) via protein arginine deiminase (PAD) inhibition in peptide glucose-6-phosphate isomerase-induced arthritis (pGIA).Methods: Cl-amidine, a PAD inhibitor, was injected into pGIA. Clinical scores and histopathological findings of ankle joints were assessed. Serum ACPA titers were analyzed using ELISA. Citrullinated protein expression in joints and sera were examined with immunohistochemistry and Western blot analysis, respectively. Serum levels of IL-6, TNFα, and IL-1β were measured with cytometric bead array (CBA). Gene expression levels of IL-6 and TNFα in joints, lymph nodes, and spleens were analyzed with quantitative PCR. GPI-specific productions of IFNγ and IL-17 from T cells in lymph nodes were evaluated.Results: Cl-amidine treatment significantly reduced arthritis severity while ACPA titers tended to be lower, but not significantly different compared to the control. Citrullinated proteins in joints and sera from treated mice were clearly decreased. With Cl-amidine treatment, serum IL-6 levels were significantly decreased, and IL-6 and TNFα gene expression were significantly reduced in joints. IL-17 production from GPI-specific T cells tended to be lower in Cl-amidine-treated mice, but not significantly different.Conclusion: Our results suggested that PAD-mediated citrullinated protein was involved in the pathogenesis of arthritis via IL-6.
Collapse
Affiliation(s)
- Hoshimi Kawaguchi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Izumi Kurata
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ebe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Tanaka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Asuka Inoue
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoto Umeda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Kawaguchi H, Matsumoto I, Osada A, Kurata I, Ebe H, Tanaka Y, Inoue A, Umeda N, Kondo Y, Tsuboi H, Shinkai Y, Kumagai Y, Ishigami A, Sumida T. Identification of novel biomarker as citrullinated inter-alpha-trypsin inhibitor heavy chain 4, specifically increased in sera with experimental and rheumatoid arthritis. Arthritis Res Ther 2018; 20:66. [PMID: 29636082 PMCID: PMC5894205 DOI: 10.1186/s13075-018-1562-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Anticitrullinated protein antibodies (ACPA) and citrullinated proteins play key roles in the pathogenesis of rheumatoid arthritis (RA). Many candidate citrullinated antigens have been identified in joints, but citrullinated proteins in sera are mostly uncertain in patients with RA. We explored the expression of citrullinated proteins in joints and sera of experimental arthritis, and we further investigated their specific expression correlated with the disease activity in patients with RA. Methods Citrullinated protein expression in tissues was examined by IHC in peptide glucose-6-phosphate isomerase-induced arthritis (pGIA). Serum citrullinated proteins from pGIA were examined by Western blotting, and the sequence was identified by MS. With the same methods, serum citrullinated proteins were analyzed in patients with RA, primary Sjögren’s syndrome, systemic lupus erythematosus, and osteoarthritis as well as in healthy subjects, by Western blotting and MS. In patients with RA, the relationship between the expression of the identified protein (inter-alpha-trypsin inhibitor heavy chain 4 [ITIH4]) and clinical features was evaluated, and the levels of citrullinated ITIH4 were compared before and after biological treatment. The antibody response against citrullinated ITIH4 peptide was measured by enzyme-linked immunosorbent assay. Results Citrullinated proteins were detected specifically in arthritic joints and sera from pGIA relative to controls. In sera, a common band of citrullinated protein at 120 kDa was revealed, and it fluctuated in parallel with arthritis score of pGIA by Western blotting. Interestingly, in 82% of RA patient sera, similar bands of citrullinated protein were specifically detected. These proteins were identified as citrullinated ITIH4, and especially the R438 site was commonly citrullinated between mice and humans. Citrullinated ITIH4 levels were associated with clinical parameters such as C-reactive protein (CRP), rheumatoid factor, and Disease Activity Score in 28 joints as measured by CRP in patients with RA. Its levels were decreased in correlation with the reduction of disease activity score after effective treatment in patients with RA. Moreover, antibody response to citrullinated epitope in ITIH4 was specifically observed in patients with RA. Conclusions Our results suggest that serum citrullinated ITIH4 was specifically increased in patients with RA and could be a novel biomarker for assessing disease activity in patients with RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1562-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hoshimi Kawaguchi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| | - Atsumu Osada
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Izumi Kurata
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Hiroshi Ebe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yuki Tanaka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Asuka Inoue
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Naoto Umeda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| |
Collapse
|
15
|
Clinical and immunological aspects of anti-peptidylarginine deiminase type 4 (anti-PAD4) autoantibodies in rheumatoid arthritis. Autoimmun Rev 2018; 17:94-102. [DOI: 10.1016/j.autrev.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
|
16
|
Meta-analysis: diagnostic accuracy of antibody against peptidylarginine deiminase 4 by ELISA for rheumatoid arthritis. Clin Rheumatol 2017; 36:2431-2438. [DOI: 10.1007/s10067-017-3809-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022]
|
17
|
Chen R, Jin G, McIntyre TM. The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 2017; 292:10112-10122. [PMID: 28455445 DOI: 10.1074/jbc.m116.771642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets are the sole source of EGF in circulation, yet how EGF is stored or released from stimulated cells is undefined. In fact, we found platelets did not store EGF, synthesized as a single 6-kDa domain in pro-EGF, but rather expressed intact pro-EGF precursor on granular and plasma membranes. Activated platelets released high-molecular-weight (HMW)-EGF, produced by a single cleavage between the EGF and the transmembrane domains of pro-EGF. We synthesized a fluorogenic peptide encompassing residues surrounding the putative sessile arginyl residue and found stimulated platelets released soluble activity that cleaved this pro-EGF1020-1027 peptide. High throughput screening identified chymostatins, bacterial peptides with a central cyclic arginyl structure, as inhibitors of this activity. In contrast, the matrix metalloproteinase/TACE (tumor necrosis factor-α-converting enzyme) inhibitor GM6001 was ineffective. Stimulated platelets released the soluble protease ADAMDEC1, recombinant ADAMDEC1 hydrolyzed pro-EGF1020-1027, and this activity was inhibited by chymostatin and not GM6001. Biotinylating platelet surface proteins showed ADAMDEC1 hydrolyzed surface pro-EGF to HMW-EGF that stimulated HeLa EGF receptor (EGFR) reporter cells and EGFR-dependent tumor cell migration. This proteolysis was inhibited by chymostatin and not GM6001. Metabolizing pro-EGF Arg1023 to citrulline with recombinant polypeptide arginine deiminase 4 (PAD4) abolished ADAMDEC1-catalyzed pro-EGF1020-1027 peptidolysis, while pretreating intact platelets with PAD4 suppressed ADAMDEC1-, thrombin-, or collagen-induced release of HMW-EGF. We conclude that activated platelets release ADAMDEC1, which hydrolyzes pro-EGF to soluble HMW-EGF, that HMW-EGF is active, that proteolytic cleavage of pro-EGF first occurs at the C-terminal arginyl residue of the EGF domain, and that proteolysis is the regulated and rate-limiting step in generating soluble EGF bioactivity from activated platelets.
Collapse
Affiliation(s)
- Rui Chen
- From the Departments of Cellular and Molecular Medicine and
| | - Ge Jin
- the Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106
| | - Thomas M McIntyre
- From the Departments of Cellular and Molecular Medicine and .,Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland 44195 Ohio and
| |
Collapse
|
18
|
Darrah E, Kim A, Zhang X, Boronina T, Cole RN, Fava A, Giles JT, Bingham III CO, Chalmers MJ, Griffin PR, Sadegh-Nasseri S, Rosen A. Proteolysis by Granzyme B Enhances Presentation of Autoantigenic Peptidylarginine Deiminase 4 Epitopes in Rheumatoid Arthritis. J Proteome Res 2016; 16:355-365. [PMID: 27700100 DOI: 10.1021/acs.jproteome.6b00617] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proteolysis of autoantigens can alter normal MHC class II antigen processing and has been implicated in the induction of autoimmune diseases. Many autoantigens are substrates for the protease granzyme B (GrB), but the mechanistic significance of this association is unknown. Peptidylarginine deiminase 4 (PAD4) is a frequent target of autoantibodies in patients with rheumatoid arthritis (RA) and a substrate for GrB. RA is strongly associated with specific MHC class II alleles, and elevated levels of GrB and PAD4 are found in the joints of RA patients, suggesting that GrB may alter the presentation of PAD4 by RA-associated class II alleles. In this study, complementary proteomic and immunologic approaches were utilized to define the effects of GrB cleavage on the structure, processing, and immunogenicity of PAD4. Hydrogen-deuterium exchange and a cell-free MHC class II antigen processing system revealed that proteolysis of PAD4 by GrB induced discrete structural changes in PAD4 that promoted enhanced presentation of several immunogenic peptides capable of stimulating PAD4-specific CD4+ T cells from patients with RA. This work demonstrates the existence of PAD4-specific T cells in patients with RA and supports a mechanistic role for GrB in enhancing the presentation of autoantigenic CD4+ T cell epitopes.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21224, United States
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine , Baltimore Maryland 21205, United States
| | - Xi Zhang
- Department of Molecular Therapeutics, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Tatiana Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , Baltimore Maryland 21205, United States
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , Baltimore Maryland 21205, United States
| | - Andrea Fava
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21224, United States
| | - Jon T Giles
- Division of Rheumatology, Columbia University, College of Physicians and Surgeons , New York, New York 10027, United States
| | - Clifton O Bingham III
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21224, United States
| | - Michael J Chalmers
- Department of Molecular Therapeutics, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Scheherazade Sadegh-Nasseri
- Department of Pathology, Johns Hopkins University School of Medicine , Baltimore Maryland 21205, United States
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21224, United States
| |
Collapse
|