1
|
Wu X, Zheng X, Ye G. WGCNA combined with machine learning to explore potential biomarkers and treatment strategies for acute liver failure, with experimental validation. ILIVER 2024; 3:100133. [DOI: 10.1016/j.iliver.2024.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
2
|
Xu L, Wang H, Sun C, Zhao Q, Wang L, Yan Q, Wang J, Lin N, Liu C. GZMK Facilitates Experimental Rheumatoid Arthritis Progression by Interacting with CCL5 and Activating the ERK Signaling. Inflammation 2024:10.1007/s10753-024-02166-4. [PMID: 39489858 DOI: 10.1007/s10753-024-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Synovial over-proliferation is a key event in the progression of rheumatoid arthritis (RA) disease. Ferroptosis may be essential for maintaining the balance between synovial proliferation and death. This study aimed to investigate the molecular mechanisms mediating the activation and ferroptosis of collagen-induced arthritis (CIA)-synovial fibroblasts (SFs). Differentially expressed genes (DEGs) in the synovial tissues of CIA rats and normal rats were screened through sequencing. The GSE115662 dataset from the GEO database was analyzed and screened for DEGs. The viability, proliferation, migration, invasion, cell cycle, and apoptosis of CIA-SFs were analyzed by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell migration, and invasion assays. The ferroptosis of CIA-SFs was assessed using matching reagent kits to detect indicators like reactive oxygen species, ferrous iron, malondialdehyde, glutathione, and superoxide dismutase. The interaction between Granzyme K (GZMK) and C-C motif chemokine 5 (CCL5) was determined by coimmunoprecipitation assay. We found abnormal GZMK expression in the GSE115662 database and mRNA sequencing data. GZMK was overexpressed in CIA-SFs, and GZMK promoted cell proliferation, migration, invasion, inflammation, and decreased cell apoptosis and ferroptosis in CIA-SFs. GZMK could interact with CCL5 to activate the ERK signaling. GZMK and CCL5 knockdown improved by reducing arthritis scores, redness and swelling of paws, and pathological changes in joint synovium of CIA rats. CCL5 overexpression reversed the effects of GZMK silencing on CIA-SFs cell proliferation, migration, invasion, apoptosis, and ferroptosis. We confirmed that GZMK accelerated experimental rheumatoid arthritis progression by interacting with CCL5 and activating the ERK signaling.
Collapse
Affiliation(s)
- Liting Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hui Wang
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Congcong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Qingyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Qianqian Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Jialin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
3
|
Lechner J, von Baehr V, Notter F, Schick F. Osteoimmune Interaction and TH-1/TH-2 Ratio in Jawbone Marrow Defects: An Underestimated Association - Original Research. Biologics 2024; 18:147-161. [PMID: 38859969 PMCID: PMC11164205 DOI: 10.2147/btt.s448587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Introduction Osteoimmunology recognizes the relationship between bone cells and immune cells. Chronic osteoimmune dysregulation is present in bone marrow defects of the jaw (BMDJ) as fatty-degenerative osteonecrosis (FDOJ). In comparison to samples from healthy jaw bone, the cytokine analysis of samples of BMDJ/FDOJ from 128 patients showed downregulated TNF-α and IL-6 expression and the singular overexpression of the chemokine RANTES/CCL5. Aim and Objectives This paper raises the question of whether the osteoimmune defects due to incomplete wound healing in BMDJ/FDOJ in 128 patients are related to dysregulation of the Th1/Th2 ratio and regulatory T cell (T-reg) expression in a control group of 197 BMDJ/FDOJ patients, each presenting with BMDJ/FJOD and one of seven different immune disorders. Material and Methods In the control group, serum concentrations of the cytokines IFN-y and IL-4 were determined after stimulated cytokine release and displayed as Th1/Th2 ratios. Results Data show a shift in Th2 in more than 80% (n = 167) of the control cohort of 197 chronically ill patients with concomitant BMDJ/FDOJ. In these 167 subjects, the Th1/Th2 ratio was <6.1 demonstrating impaired immune regulation. Forty-seven subjects or 30% showed not only a shift in Th2 but also excessive T-reg overactivation with levels of >1.900 pg/mL, indicating strongly downregulated immune activity. Discussion BMDJ/FDOJ is characterized by a lack of Th1 cytokines and an excessive expression of RANTES/CCL5 and IL-1ra and, thus, the inversion of an acute inflammatory cytokine pattern. In contrast, abdominal fat contains a very high proportion of regulatory Th1 cells and produces an inflammatory immune response through the high overexpression of TNF-α and IL-6. The lack of Th1 activation in BMDJ/FDOJ areas inhibits normal wound healing and supports the persistence of BMDJ/FDOJ. Conclusion The Th1/Th2 ratio requires greater consideration, especially with respect to wound healing following dental surgical interventions, such as jaw surgery, implantation and augmentation, to avoid the emergence of the osteoimmune situation that is characteristic of BMDJ/FDOJ.
Collapse
Affiliation(s)
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | | | | |
Collapse
|
4
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
5
|
Alturaiki W, Alhamad A, Alturaiqy M, Mir SA, Iqbal D, Bin Dukhyil AA, Alaidarous M, Alshehri B, Alsagaby SA, Almalki SG, Alghofaili F, Choudhary RK, Almutairi S, Banawas S, Alosaimi B, Mubarak A. Assessment of IL-1β, IL-6, TNF-α, IL-8, and CCL 5 levels in newly diagnosed Saudi patients with rheumatoid arthritis. Int J Rheum Dis 2022; 25:1013-1019. [PMID: 35748059 DOI: 10.1111/1756-185x.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1β, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1β, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION Overall, the findings suggested that IL-1β, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Main Laboratory and blood bank, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Muath Alturaiqy
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ranjay K Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Castañeda-Delgado JE, Macias-Segura N, Ramos-Remus C. Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery. Noncoding RNA 2022; 8:ncrna8030035. [PMID: 35736632 PMCID: PMC9228273 DOI: 10.3390/ncrna8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Recent advances in gene expression analysis techniques and increased access to technologies such as microarrays, qPCR arrays, and next-generation sequencing, in the last decade, have led to increased awareness of the complexity of the inflammatory responses that lead to pathology. This finding is also the case for rheumatic diseases, importantly and specifically, rheumatoid arthritis (RA). The coincidence in major genetic and epigenetic regulatory events leading to RA’s inflammatory state is now well-recognized. Research groups have characterized the gene expression profile of early RA patients and identified a group of miRNAs that is particularly abundant in the early stages of the disease and miRNAs associated with treatment responses. In this perspective, we summarize the current state of RNA-based biomarker discovery and the context of technology adoption/implementation due to the COVID-19 pandemic. These advances have great potential for clinical application and could provide preclinical disease detection, follow-up, treatment targets, and biomarkers for treatment response monitoring.
Collapse
Affiliation(s)
- Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico
- Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Cd. México 03940, Mexico
- Correspondence: (J.E.C.-D.); (C.R.-R.)
| | - Noé Macias-Segura
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Cesar Ramos-Remus
- Instituto de Ciencias Biologicas, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
- Correspondence: (J.E.C.-D.); (C.R.-R.)
| |
Collapse
|
7
|
Han X, Song D. Using a Machine Learning Approach to Identify Key Biomarkers for Renal Clear Cell Carcinoma. Int J Gen Med 2022; 15:3541-3558. [PMID: 35392028 PMCID: PMC8980298 DOI: 10.2147/ijgm.s351168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The most common and deadly subtype of renal carcinoma is kidney renal clear cell carcinoma (KIRC), which accounts for approximately 75% of renal carcinoma. However, the main cause of death in KIRC patients is tumor metastasis. There are no obvious clinical features in the early stage of kidney cancer, and 25–30% of patients have already metastasized when they are first diagnosed. Moreover, KIRC patients whose local tumors have been removed by nephrectomy are still at high risk of metastasis and recurrence and are not sensitive to chemotherapy and radiotherapy, leading to poor prognosis. Therefore, early diagnosis and treatment of this disease are very important. Methods KIRC-related patient datasets were downloaded from the GEO database and TCGA database. DEG screening and GO, KEGG and GSEA enrichment analysis was firstly conducted and then the LASSO and support vector machine (SVM) RFE algorithms were adopted to identify KIRC-associated key genes in training sets and validate them in the test set. The clinical prognostic analysis including the association between the expression of key genes and the overall survival, stage, grade across KIRC, the immune infiltration difference between normal samples and cancer samples, the correlation between the key genes and immune cells, immunomodulator, immune subtypes of KIRC were investigated in this research. Results We finally screened out 4 key genes, including ACPP, ANGPTL4, SCNN1G, SLC22A7. The expression of key genes show difference among normal samples and tumor samples, SCNN1G and SLC22A7 could be predictor of prognosis of patients. The expression of key genes was related with the abundance of tumor infiltration immune cells and the gene expression of immune checkpoint. Conclusion This study screened the 4 key genes, which contributed to early diagnosis, prognosis assessment and immune target treatment of patients with KIRC.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People’s Republic of China
- Correspondence: Dianwen Song, Email
| |
Collapse
|
8
|
Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network. Clin Rheumatol 2021; 41:1057-1068. [PMID: 34767108 DOI: 10.1007/s10067-021-05960-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study was designed to identify the potential diagnostic biomarkers of rheumatoid arthritis (RA) and to explore the potential pathological relevance of immune cell infiltration in this disease. METHODS Three previously published datasets containing gene expression data from 35 RA patients and 29 controls (GSE55235, GSE55457, and GSE12021) were downloaded from the GEO database, after which a weighted correlation network analysis (WGCNA) approach was utilized to clarify differentially abundant genes. Candidate biomarkers of RA were then identified via the use of a LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) analyses. Data were validated based upon the area under the receiver operating characteristic curve (AUC) values, with hub genes being identified as those with an AUC > 85% and a P value < 0.05. Lastly, the CIBERSORT algorithm was used to assess immune cell infiltration of RA tissues, and correlations between immune cell infiltration and disease-related diagnostic biomarkers were assessed. RESULTS The green-yellow module containing 87 genes was found to be highly correlated with RA positivity. FADD, CXCL2, and CXCL8 were identified as potential RA diagnostic biomarkers (AUC > 0.85), and these results were validated using the GSE77298 dataset. Immune cell infiltration analyses revealed the expression of hub genes to be correlated with mast cells, monocytes, activated NK cells, CD8 T cells, resting dendritic cells, and plasma cells. CONCLUSION These data indicate that FADD, CXCL2, and CXCL8 are valuable diagnostic biomarkers of RA, offering new insight that can guide future studies of RA incidence and progression.
Collapse
|
9
|
Puentes-Osorio Y, Amariles P, Calleja MÁ, Merino V, Díaz-Coronado JC, Taborda D. Potential clinical biomarkers in rheumatoid arthritis with an omic approach. AUTOIMMUNITY HIGHLIGHTS 2021; 12:9. [PMID: 34059137 PMCID: PMC8165788 DOI: 10.1186/s13317-021-00152-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Objective To aid in the selection of the most suitable therapeutic option in patients with diagnosis of rheumatoid arthritis according to the phase of disease, through the review of articles that identify omics biological markers. Methods A systematic review in PubMed/Medline databases was performed. We searched articles from August 2014 to September 2019, in English and Spanish, filtered by title and full text; and using the terms "Biomarkers" AND “Rheumatoid arthritis". Results This article supplies an exhaustive review from research of objective measurement, omics biomarkers and how disease activity appraise decrease unpredictability in treatment determinations, and finally, economic, and clinical outcomes of treatment options by biomarkers’ potential influence. A total of 122 articles were included. Only 92 met the established criteria for review purposes and 17 relevant references about the topic were included as well. Therefore, it was possible to identify 196 potential clinical biomarkers: 22 non-omics, 20 epigenomics, 33 genomics, 21 transcriptomics, 78 proteomics, 4 glycomics, 1 lipidomics and 17 metabolomics. Conclusion A biomarker is a measurable indicator of some, biochemical, physiological, or morphological condition; evaluable at a molecular, biochemical, or cellular level. Biomarkers work as indicators of physiological or pathological processes, or as a result of a therapeutic management. In the last five years, new biomarkers have been identified, especially the omics, which are those that proceed from the investigation of genes (genomics), metabolites (metabolomics), and proteins (proteomics). These biomarkers contribute to the physician choosing the best therapeutic option in patients with rheumatoid arthritis.
Collapse
|
10
|
Lechner J, Schmidt M, von Baehr V, Schick F. Undetected Jawbone Marrow Defects as Inflammatory and Degenerative Signaling Pathways: Chemokine RANTES/CCL5 as a Possible Link Between the Jawbone and Systemic Interactions? J Inflamm Res 2021; 14:1603-1612. [PMID: 33911892 PMCID: PMC8071694 DOI: 10.2147/jir.s307635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cytokines, especially chemokines, are of increasing interest in immunology. This study characterizes the little-known phenomenon of “bone marrow defects of the jawbone” (BMDJ) with known overexpression of the chemokine RANTES/CCL5 (R/C). Purpose Our investigation clarifies why BMDJ and the intensity of local R/C overexpression are challenging to detect, as examined in patients with seven different systemic immunological diseases. Specifically, we investigate whether R/C overexpression is specific to certain disease groups or if it represents a type of signal disruption found in all systemic immunological diseases. Patients and Methods In a total of 301 patients, BMDJ was surgically repaired during clinical practice to reduce “silent inflammation” associated with the presence of jaw-related pathologies. In each case of BMDJ, bone density was measured preoperatively (in Hounsfield units [HU]), while R/C expression was measured postoperatively. Each of the 301 patients suffered from allergies, atypical facial and trigeminal pain, or were diagnosed with neurodegenerative diseases, tumors, rheumatism, chronic fatigue syndrome, or parasympathetic disorders. Results In all BMDJ cases, strongly negative HU values indicated decreased bone density or osteolysis. Consistently, all cases of BMDJ showed elevated R/C expression. These findings were consistently observed in every disease group. Discussion BMDJ was confirmed in all patients, as verified by the HU measurements and laboratory results related to R/C expression. The hypothesis that a specific subset of the seven disease groups could be distinguished either based on the increased presence of BMDJ and by the overexpression of R/C could not be confirmed. A brief literature review confirms the importance of R/C in the etiology of each of the seven disease groups. Conclusion In this research, the crucial role played by BMDJ and the chemokine R/C in inflammatory and immune diseases is discussed for seven groups of patients. Each specific immune disease can be influenced or propelled by BMDJ-derived R/C inflammatory signaling pathways.
Collapse
Affiliation(s)
- Johann Lechner
- Head of the Clinic for Integrative Dentistry, Munich, Germany
| | | | - Volker von Baehr
- Head of the Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| |
Collapse
|
11
|
Comprehensive Bioinformatics Analysis Reveals Hub Genes and Inflammation State of Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6943103. [PMID: 32802866 PMCID: PMC7424395 DOI: 10.1155/2020/6943103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, which has not been thoroughly cured yet, and standardized treatment is helpful for alleviating clinical symptoms. Here, various bioinformatics analysis tools were comprehensively utilized, aiming to identify critical biomarkers and possible pathogenesis of RA. Three gene expression datasets profiled by microarray were obtained from GEO database. Dataset GSE55235 and GSE55457 were merged for subsequent analyses. We identified differentially expressed genes (DEGs) in RStudio with limma package, performing functional enrichment analysis based on GSEA software and clusterProfiler package. Next, protein-protein interaction (PPI) network was set up through STRING database and Cytoscape. Moreover, CIBERSORT website was used to assess the inflammatory state of RA. Finally, we validated the candidate hub genes with dataset GSE77298. As a result, we identified 106 DEGs (72 upregulated and 34 downregulated genes). Through GO, KEGG, and GSEA analysis, we found that DEGs were mainly involved in immune response and inflammatory signaling pathway. With the help of Cytoscape software and MCODE plug-in, the most prominent subnetwork was screened out, containing 14 genes and 45 edges. For ROC curve analysis, eight genes with AUC >0.80 were considered as hub genes of RA. In conclusion, compared with healthy controls, the DEGs and their closely related biological functions were analyzed, and we held that chemokines and immune cells infiltration promote the progression of rheumatoid arthritis. Targeting the eight biomarkers we identified may be useful for the diagnosis and treatment of rheumatoid arthritis.
Collapse
|
12
|
Zhang D, Li Z, Zhang R, Yang X, Zhang D, Li Q, Wang C, Yang X, Xiong Y. Identification of differentially expressed and methylated genes associated with rheumatoid arthritis based on network. Autoimmunity 2020; 53:303-313. [DOI: 10.1080/08916934.2020.1786069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - ZhaoFang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - RongQiang Zhang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - XiaoLi Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - DanDan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
13
|
Guo L, Liu J, Zhang Y, Fu S, Qiu Y, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. The Effect of Baicalin on the Expression Profiles of Long Non-Coding RNAs and mRNAs in Porcine Aortic Vascular Endothelial Cells Infected with Haemophilus parasuis. DNA Cell Biol 2020; 39:801-815. [PMID: 32096672 DOI: 10.1089/dna.2019.5340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis can elicit serious inflammatory responses, which contribute to huge economic losses to the swine industry. However, the pathogenic mechanisms underlying inflammation-related damage induced by H. parasuis remain unclear. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have important functions in the regulation of autoimmune disorders. Baicalin has been shown to have anti-inflammatory, anti-microbial, and anti-oxidant activities. In this study, we investigated whether lncRNAs were involved in the vascular injury or inflammation triggered by H. parasuis and whether baicalin regulated the lncRNA profiles of porcine aortic vascular endothelial cells (PAVECs) infected with H. parasuis. The results showed that the lncRNA and mRNA expression profiles of PAVECs were changed by H. parasuis. Important functions of lncRNAs and mRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that the targets of differentially expressed lncRNAs of H. parasuis infected PAVECs were mainly involved in the tumor necrosis factor (TNF) signaling pathway, apoptosis, and N-glycan biosynthesis; whereas nicotinate and nicotinamide metabolism, the cytosolic DNA-sensing pathway, the TNF signaling pathway, and the nuclear factor (NF)-kappa B signaling pathway were enriched in PAVECs pretreated with baicalin. In addition, top hub genes and lncRNAs were identified and validated by quantitative polymerase chain reaction. CCL5, GBP1, and SAMHD1 were significantly upregulated after H. parasuis infection, whereas they were significantly downregulated with baicalin pretreatment. LncRNA ALDBSSCT0000001677, ALDBSSCT0000001353, MSTRG.10724.2, and ALDBSSCT0000010434 had the same expression pattern. Collectively, these data suggested that baicalin could modify changes to the lncRNAs profiles or regulate lncRNAs that participate in inflammation-related signaling pathways, thereby alleviating tissue damage or inflammatory responses induced by H. parasuis. To our best knowledge, this is the first article of H. parasuis stimulating changes to the lncRNA profiles of PAVECs and the capability of baicalin to regulate lncRNA changes in PAVECs infected with H. parasuis, which might provide a novel therapeutic target for the control of H. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Zhang Y, Qian X, Yang X, Niu R, Song S, Zhu F, Zhu C, Peng X, Chen F. ASIC1a induces synovial inflammation via the Ca 2+/NFATc3/ RANTES pathway. Theranostics 2020; 10:247-264. [PMID: 31903118 PMCID: PMC6929608 DOI: 10.7150/thno.37200] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Synovial inflammation is one of the main pathological features of rheumatoid arthritis (RA) and is a key factor leading to the progression of RA. Understanding the regulatory mechanism of synovial inflammation is crucial for the treatment of RA. Acid-sensing ion channel 1a (ASIC1a) is an H+-gated cation channel that promotes the progression of RA, but the role of ASIC1a in synovial inflammation is unclear. This study aimed to investigate whether ASIC1a is involved in the synovial inflammation and explore the underlying mechanisms in vitro and in vivo. Methods: The expression of ASIC1a and nuclear factor of activated T cells (NFATs) were analyzed by Western blotting, immunofluorescence, and immunohistochemistry both in vitro and in vivo. The Ca2+ influx mediated by ASIC1a was detected by calcium imaging and flow cytometry. The role of ASIC1a in inflammation was studied in rats with adjuvant-induced arthritis (AA). Inflammatory cytokine profile was analyzed by protein chip in RA synovial fibroblasts (RASF) and verified by a magnetic multi-cytokine assay and ELISA. The NFATc3-regulated RANTES (Regulated upon activation, normal T cell expressed and secreted) gene transcription was investigated by ChIP-qPCR and dual-luciferase reporter assay. Results: The expression of ASIC1a was significantly increased in human RA synovial tissues and primary human RASF as well as in ankle synovium of AA rats. Activated ASIC1a mediated Ca2+ influx to increase [Ca2+]i in RASF. The activation/overexpression of ASIC1a in RASF up-regulated the expression of inflammatory cytokines RANTES, sTNF RI, MIP-1a, IL-8, sTNF RII, and ICAM-1 among which RANTES was increased most remarkably. In vivo, ASIC1a promoted inflammation, synovial hyperplasia, articular cartilage, and bone destruction, leading to the progression of AA. Furthermore, activation of ASIC1a upregulated the nuclear translocation of NFATc3, which bound to RANTES promoter and directly regulated gene transcription to enhance RANTES expression. Conclusion: ASIC1a induces synovial inflammation, which leads to the progression of RA. Our study reveals a novel RA inflammation regulatory mechanism and indicates that ASIC1a might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yihao Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xuewen Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaojuan Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Sujing Song
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Fei Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chuanjun Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaoqing Peng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| |
Collapse
|
15
|
Teixeira JH, Silva AM, Almeida MI, Bessa-Gonçalves M, Cunha C, Barbosa MA, Santos SG. The Systemic Immune Response to Collagen-Induced Arthritis and the Impact of Bone Injury in Inflammatory Conditions. Int J Mol Sci 2019; 20:E5436. [PMID: 31683648 PMCID: PMC6862543 DOI: 10.3390/ijms20215436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone defect (FD). The impact of CIA on endogenous mesenchymal stem/stromal cells (MSC) was also investigated. CIA induction led to enlarged, more proliferative, spleen and draining lymph nodes, with altered proportion of lymphoid populations. Upon FD, CIA animals increased the systemic myeloid cell proportions, and their expression of co-stimulatory molecules CD40 and CD86. Screening plasma cytokine/chemokine levels showed increased tumor necrosis factor-α (TNF-α), Interleukin (IL)-17, IL-4, IL-5, and IL-12 in CIA, and IL-2 and IL-6 increased in CIA and CIA+FD, while Fractalkine and Leptin were decreased in both groups. CIA-derived MSC showed lower metabolic activity and proliferation, and significantly increased osteogenic and chondrogenic differentiation markers. Exposure of control-MSC to TNF-α partially mimicked the CIA-MSC phenotype in vitro. In conclusion, inflammatory conditions of CIA led to alterations in systemic immune cell proportions, circulating mediators, and in endogenous MSC. CIA animals respond to FD, and the combined model can be used to study the mechanisms of bone repair in inflammatory conditions.
Collapse
Affiliation(s)
- José H Teixeira
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal.
| | - Andreia M Silva
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal.
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
| | - Mafalda Bessa-Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal.
| | - Carla Cunha
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
| | - Mário A Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal.
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde and INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal.
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|