1
|
Purushothaman E, Shanmugavadivu A, Balagangadharan K, Lekhavadhani S, Saranya I, Babu S, Selvamurugan N. Osteogenic potential of esculetin-loaded chitosan nanoparticles in microporous alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Int J Biol Macromol 2025; 286:138518. [PMID: 39647745 DOI: 10.1016/j.ijbiomac.2024.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Bone tissue engineering (BTE) is an emerging strategy for the treatment of critical bone defects using biomaterials and cells. Esculetin (ES), a coumarin phytocompound, has demonstrated therapeutic potential, although its osteogenic effects remain insufficiently explored. Owing to its hydrophobic nature, which limits its bioavailability, this study developed a drug delivery system using chitosan nanoparticles (nCS) to achieve sustained release of ES. These ES-loaded nCS nanoparticles were incorporated into biocomposite scaffolds composed of alginate (Alg) and polyvinyl alcohol (PVA) using freeze-drying. The synthesized nCS-ES nanoparticles exhibited spherical morphology with a uniform size distribution, ranging from 105 to 117 nm, and demonstrated excellent entrapment efficiencies (94.07 to 97.61 %). The nanoparticles displayed high zeta potential values (+27.8 to +33.2 mV), ensuring stable dispersion. The biocomposite scaffolds exhibited a uniform distribution of pores, with pore diameters ranging from 106 ± 14 μm to 112 ± 14 μm. The biocomposite scaffolds exhibited excellent swelling, protein adsorption, biodegradation, and biomineralization properties. The ES-loaded scaffolds showed sustained ES release, promoting osteogenesis in vitro, with the activation of the Wnt/β-catenin signaling pathway. In vivo studies using a rat tibial bone defect model further confirmed that these scaffolds stimulated new bone formation, highlighting the ES's potential for BTE applications.
Collapse
Affiliation(s)
- Elumalai Purushothaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Hu Y, Wang Y, Hong H, Chen Y, Zhou Q, Zhu G, Tang J, Liu W, Wang L. Global trends and prospects related to macrophage in chronic kidney disease: a bibliometric analysis. Ren Fail 2024; 46:2423846. [PMID: 39572163 PMCID: PMC11583328 DOI: 10.1080/0886022x.2024.2423846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND AND AIMS Macrophages play a variety of widely concerned roles in the process of chronic kidney disease (CKD). To further understand the research hotspots and development trends regarding the relationship between macrophages and CKD, the role of macrophages in the occurrence and progression of CKD was summarized by bibliometrics in this study. MATERIAL AND METHODS We collected the studies relevant the role of macrophages in CKD from the Web of Science Core Collection, which included 1332 relevant studies from Jan 1st, 2004 to Jul 6th, 2023 in WoSCC. CiteSpace, biblioshiny in R, VOSviewer and SCImago Graphica Beta were used for bibliometric analysis and visualization. RESULTS Monash University from Australia is the most productive institution, while China and the USA are most productive countries. Anders HJ is the most cited author. In terms of the number of co-citations, the top one was "Macrophages: versatile players in renal inflammation and fibrosis" by Patrick Ming-Kuen Tang, published in Nature Reviews Nephrology in 2019. Important keywords of this research topic include inflammation, dendritic cell, oxidative stress, NF-κB, tgf-beta, interstitial fibrosis, glomerulonephritis, diabetic nephropathy. Future research hotspots may include molecular mechanism, acute kidney injury, macrophage polarization, kidney fibrosis. CONCLUSION This study provides a systematic review of the role of macrophages in CKD and speculates that future research hotspots. Previous studies have focused on the immune function of macrophages and atypia, and metabolic factors (especially iron metabolism within macrophages) have attracted the attention of researchers in recent years and are the forefront of recent research.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Henan, China
| | - Hanzhang Hong
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qinjie Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research-Institution of Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ma S, Meng G, Liu T, You J, He R, Zhao X, Cui Y. The Wnt signaling pathway in hepatocellular carcinoma: Regulatory mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 180:117508. [PMID: 39362068 DOI: 10.1016/j.biopha.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that arises from hepatocytes. Multiple signaling pathways play a regulatory role in the occurrence and development of HCC, with the Wnt signaling pathway being one of the primary regulatory pathways. In normal hepatocytes, the Wnt signaling pathway maintains cell regeneration and organ development. However, when aberrant activated, the Wnt pathway is closely associated with invasion, cancer stem cells(CSCs), drug resistance, and immune evasion in HCC. Among these factors, the development of drug resistance is one of the most important factors affecting the efficacy of HCC treatment. These mechanisms form the basis for tumor cell adaptation and evolution within the body, enabling continuous changes in tumor cells, resistance to drugs and immune system attacks, leading to metastasis and recurrence. In recent years, there have been numerous new discoveries regarding these mechanisms. An increasing number of drugs targeting the Wnt signaling pathway have been developed, with some already entering clinical trials. Therefore, this review encompasses the latest research on the role of the Wnt signaling pathway in the onset and progression of HCC, as well as advancements in its therapeutic strategies.
Collapse
Affiliation(s)
- Shihui Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guorui Meng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Tong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junqi You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Risheng He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xudong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
4
|
Fleischhauer L, López-Delgado AC, Geurtzen K, Knopf F. Glucocorticoid effects in the regenerating fin reflect tissue homeostasis disturbances in zebrafish by affecting Wnt signaling. Front Endocrinol (Lausanne) 2023; 14:1122351. [PMID: 37334313 PMCID: PMC10273277 DOI: 10.3389/fendo.2023.1122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
As a treatment for various immune-mediated diseases, the use of glucocorticoids as anti-inflammatory and immunosuppressive agents is common practice. However, their use is severely hampered by the risk of the development of adverse effects such as secondary osteoporosis, skin atrophy, and peptic ulcer formation. The exact molecular and cellular mechanisms underlying those adverse effects, which involve most major organ systems, are not yet fully understood. Therefore, their investigation is of great importance to improve treatment regimens for patients. Here, we investigated the effects of the glucocorticoid prednisolone on cell proliferation and Wnt signaling in homeostatic skin and intestinal tissue and compared them to the anti-regenerative effects in zebrafish fin regeneration. We also investigated a potential recovery from the glucocorticoid treatment and the impact of short-term treatment with prednisolone. We identified a dampening effect of prednisolone on Wnt signaling and proliferation in highly proliferative tissues, namely the skin and intestine, as well as reduced fin regenerate length and Wnt reporter activity in the fin. The presence of the Wnt inhibitor Dickkopf1 was enhanced in prednisolone treated skin tissue. A decreased number of mucous producing goblet cells was observed in the intestine of prednisolone treated zebrafish. Unexpectedly, proliferation in bone forming osteoblasts of the skull, homeostatic scales, as well as the brain was not decreased, opposite to the observed effects in the skin, fin, and intestine. Short-term treatment with prednisolone for a few days did not significantly alter fin regenerate length, skin cell proliferation, intestinal leukocyte number and proliferation of intestinal crypt cells. However, it affected the number of mucous-producing goblet cells in the gut. Likewise, discontinuation of prednisolone treatment for a few days saved the skin and intestine from a significant reduction of skin and intestinal cell proliferation, intestinal leukocyte number and regenerate length, but did not rescue goblet cell number. The suppressive effects of glucocorticoids in highly proliferative tissues may be relevant in the context of their therapeutic applications in patients with inflammatory diseases.
Collapse
Affiliation(s)
- Lisa Fleischhauer
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Alejandra Cristina López-Delgado
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Karina Geurtzen
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Franziska Knopf
- CRTD – Center for Regenerative Therapies, TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Chen M, Fu W, Xu H, Liu CJ. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev 2023; 70:54-66. [PMID: 36906448 PMCID: PMC10518688 DOI: 10.1016/j.cytogfr.2023.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023; 13:biom13030483. [PMID: 36979418 PMCID: PMC10046187 DOI: 10.3390/biom13030483] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis, one of the serious health diseases, involves bone mass loss, bone density diminishing, and degeneration of bone microstructure, which is accompanied by a tendency toward bone fragility and a predisposition to fracture. More than 200 million people worldwide suffer from osteoporosis, and the cost of treating osteoporotic fractures is expected to reach at least $25 billion by 2025. The generation and development of osteoporosis are regulated by genetic factors and regulatory factors such as TGF-β, BMP, and FGF through multiple pathways, including the Wnt signaling pathway, the Notch signaling pathway, and the MAPK signaling pathway. Among them, the Wnt signaling pathway is one of the most important pathways. It is not only involved in bone development and metabolism but also in the differentiation and proliferation of chondrocytes, mesenchymal stem cells, osteoclasts, and osteoblasts. Dkk-1 and SOST are Wnt inhibitory proteins that can inhibit the activation of the canonical Wnt signaling pathway and block the proliferation and differentiation of osteoblasts. Therefore, they may serve as potential targets for the treatment of osteoporosis. In this review, we analyzed the mechanisms of Wnt proteins, β-catenin, and signaling molecules in the process of signal transduction and summarized the relationship between the Wnt signaling pathway and bone-related cells. We hope to attract attention to the role of the Wnt signaling pathway in osteoporosis and offer new perspectives and approaches to making a diagnosis and giving treatment for osteoporosis.
Collapse
|
8
|
Zou G, Park JI. Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol 2023; 29:33-50. [PMID: 35785913 PMCID: PMC9845677 DOI: 10.3350/cmh.2022.0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023] Open
Abstract
The liver exhibits the highest recovery rate from acute injuries. However, in chronic liver disease, the long-term loss of hepatocytes often leads to adverse consequences such as fibrosis, cirrhosis, and liver cancer. The Wnt signaling plays a pivotal role in both liver regeneration and tumorigenesis. Therefore, manipulating the Wnt signaling has become an attractive approach to treating liver disease, including cancer. Nonetheless, given the crucial roles of Wnt signaling in physiological processes, blocking Wnt signaling can also cause several adverse effects. Recent studies have identified cancer-specific regulators of Wnt signaling, which would overcome the limitation of Wnt signaling target approaches. In this review, we discussed the role of Wnt signaling in liver regeneration, precancerous lesion, and liver cancer. Furthermore, we summarized the basic and clinical approaches of Wnt signaling blockade and proposed the therapeutic prospects of cancer-specific Wnt signaling blockade for liver cancer treatment.
Collapse
Affiliation(s)
- Gengyi Zou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author : Gengyi Zou Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd Unit 1054, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA,Jae-Il Park Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| |
Collapse
|
9
|
García-García P, Reyes R, García-Sánchez D, Pérez-Campo FM, Rodríguez-Rey JC, Évora C, Díaz-Rodríguez P, Delgado A. Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. J Nanobiotechnology 2022; 20:462. [PMID: 36309688 PMCID: PMC9618188 DOI: 10.1186/s12951-022-01674-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis (OP) is characterized by a loss in bone mass and mineral density. The stimulation of the canonical Wnt/β-catenin pathway has been reported to promote bone formation, this pathway is controlled by several regulators as secreted frizzled-related protein-1 (Sfrp-1), antagonist of the pathway. Thus, Sfrp-1 silencing therapies could be suitable for enhancing bone growth. However, the systemic stimulation of Wnt/β-catenin has been correlated with side effects. This work hypothesizes the administration of lipid-polymer NPs (LPNPs) functionalized with a MSC specific aptamer (Apt) and carrying a SFRP1 silencing GapmeR, could favor bone formation in OP with minimal undesired effects. Suitable SFRP1 GapmeR-loaded Apt-LPNPs (Apt-LPNPs-SFRP1) were administered in osteoporotic mice and their biodistribution, toxicity and bone induction capacity were evaluated. The aptamer functionalization of the NPs modified their biodistribution profile showing a four-fold increase in the bone accumulation and a ten-fold decrease in the hepatic accumulation compared to naked LPNPs. Moreover, the histological evaluation revealed evident changes in bone structure observing a more compact trabecular bone and a cortical bone thickness increase in the Apt-LPNPs-SFRP1 treated mice with no toxic effects. Therefore, these LPNPs showed suitable properties and biodistribution profiles leading to an enhancement on the bone density of osteoporotic mice.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
| | - Ricardo Reyes
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38206, La Laguna, Spain
| | - Daniel García-Sánchez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Flor María Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - José Carlos Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain
| | - Patricia Díaz-Rodríguez
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38206, La Laguna, Spain.
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38320, La Laguna, Spain.
| |
Collapse
|
10
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 423] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases. Int J Mol Sci 2021; 22:ijms222413295. [PMID: 34948091 PMCID: PMC8706765 DOI: 10.3390/ijms222413295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids, as multifunctional hormones, are widely used in the treatment of various diseases including nephrological disorders. They are known to affect immunological cells, effectively treating many autoimmune and inflammatory processes. Furthermore, there is a growing body of evidence demonstrating the potent role of glucocorticoids in non-immune cells such as podocytes. Moreover, novel data show additional pathways and processes affected by glucocorticoids, such as the Wnt pathway or autophagy. The endothelium is currently considered as a key organ in the regulation of numerous kidney functions such as glomerular filtration, vascular tone and the regulation of inflammation and coagulation. In this review, we analyse the literature concerning the effects of endothelial glucocorticoid receptor signalling on kidney function in health and disease, with special focus on hypertension, diabetic kidney disease, glomerulopathies and chronic kidney disease. Recent studies demonstrate the potential role of endothelial GR in the prevention of fibrosis of kidney tissue and cell metabolism through Wnt pathways, which could have a protective effect against disease progression. Another important aspect covered in this review is blood pressure regulation though GR and eNOS. We also briefly cover potential therapies that might affect the endothelial glucocorticoid receptor and its possible clinical implications, with special interest in selective or local GR stimulation and potential mitigation of GC treatment side effects.
Collapse
|
12
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|