1
|
John K, Kathuria S, Peel J, Page J, Aitkenhead R, Felstead A, Heffernan SM, Jeffries O, Tallent J, Waldron M. Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males. Eur J Appl Physiol 2024; 124:2489-2502. [PMID: 38568259 PMCID: PMC11322244 DOI: 10.1007/s00421-024-05460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/04/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Caffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat. METHODS In a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg). RESULTS There was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by - 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05). CONCLUSION The greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.
Collapse
Affiliation(s)
- Kevin John
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Sayyam Kathuria
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Jenny Peel
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Joe Page
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Robyn Aitkenhead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Aimee Felstead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Shane M Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Clayton, Australia
| | - Mark Waldron
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK.
- Welsh Institute of Performance Science, Swansea University, Swansea, UK.
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Down, QLD, Australia.
| |
Collapse
|
2
|
Huygen L, Thys PM, Wollenberg A, Gutermuth J, Krohn IK. Skin Barrier Function Assessment: Electrical Impedance Spectroscopy Is Less Influenced by Daily Routine Activities Than Transepidermal Water Loss. Ann Dermatol 2024; 36:99-111. [PMID: 38576248 PMCID: PMC10995614 DOI: 10.5021/ad.23.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Skin barrier function assessment is commonly done by measuring transepidermal water loss (TEWL). An important limitation of this method is the influence of intrinsic and extrinsic factors. Electrical impedance spectroscopy (EIS) is a lesser-established method for skin barrier function assessment. Some influential factors have been described, but no guidelines exist regarding the standardization of these measurements. OBJECTIVE To evaluate the effect size of daily routine activities on TEWL and EIS, as well as their correlation with age and anatomical differences. METHODS Healthy participants (n=31) were stratified into three age groups (18-29, 30-49, and ≥50 years). In a climate-controlled room, EIS and TEWL measurements were performed on the left and right volar forearm and abdomen. RESULTS Body cream application decreased TEWL and EIS values after 15 and 90 minutes. Skin washing decreased TEWL for 15 minutes and EIS values for at least 90 minutes. TEWL was increased 5 minutes after moderate to intense exercise. Coffee intake increased TEWL on the abdomen after 60 minutes. TEWL and EIS values did not correlate with participants' age and no anatomical differences were observed. No correlation was observed between TEWL and EIS. CONCLUSION Body cream application and skin washing should be avoided at least 90 minutes prior to measurements of TEWL and EIS. Exercise and coffee intake should also be avoided prior to TEWL measurements. EIS may be a promising tool for skin barrier function assessment as it is less affected by daily routine activities than TEWL.
Collapse
Affiliation(s)
- Lisa Huygen
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium.
| | - Pauline Marie Thys
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
| | - Andreas Wollenberg
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Department of Dermatology and Allergy, University Hospital Augsburg, Augsburg, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| |
Collapse
|
3
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Kwon RW, Park JS, Lee HG, Park JI, Choo EA, Lee SJ, Lee JB. Coffee intake may promote sudomotor function activation via the contribution of caffeine. Front Nutr 2022; 9:1051828. [PMID: 36570158 PMCID: PMC9774485 DOI: 10.3389/fnut.2022.1051828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives To determine whether drinking coffee with caffeine accelerates the sympathetic response to acetylcholine (ACh). Methods Tests were performed twice at 1-week intervals following the intake of coffee. Subjects were randomly divided into two groups: Group A was administered 16 fluid oz of water (CON), while Group B was given 16 fluid oz of coffee (Coffee). After 1 week, Group A was administered 16 fluid oz of coffee (Coffee), while Group B was given 16 fluid oz of water (CON). The quantitative sudomotor axon reflex test (QSART) was performed after intake of coffee and water and a 40 min break. QSART with iontophoresis and 10% ACh was performed to determine axon reflex (AXR) mediated with and without iontophoresis [AXR (1) and AXR (2), respectively], and directly activated sweating (DIR). Results The sweat onset time of the AXR was shorter in the Coffee compared with the CON (p < 0.05). The sweat rates in AXR (1) AXR (2) and DIR were significantly higher in the Coffee than in the CON (p < 0.05, p < 0.05, p < 0.01, respectively). In addition, the Coffee showed significantly higher density of activated sweat glands and activated sweat gland output than the CON (p < 0.05, p < 0.01, respectively). The overall results of this study showed that coffee intake could stimulate higher activation in both AXR and DIR sweat responses. Conclusion Coffee intake can improve sweating sensitivity in both the AXR and DIR by the contribution of caffeine contained in coffee. This suggests that other compounds in coffee may not inhibit the sympathetic response to ACh. Therefore, coffee may be clinically worth considering as a supplement for the activation of the cholinergic and sudomotor function.
Collapse
Affiliation(s)
- Ryeo-Won Kwon
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea,Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jin-Sun Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ha-Gyoung Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jong-In Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Eon-Ah Choo
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seung-Jea Lee
- Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea,Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea,*Correspondence: Jeong-Beom Lee,
| |
Collapse
|
5
|
Lee SJ, Kim TW, Park TH, Lee IH, Jang EC, Kwon SC, Lee HJ, Choi JH, Lee JB. Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:501-509. [PMID: 36302624 PMCID: PMC9614401 DOI: 10.4196/kjpp.2022.26.6.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
Irisin is a myokine caused by exercise that improves insulin resistance and weight loss. However, under unfavorable conditions such as air pollution, and during the pandemic, outdoor activities are uncomfortable. Therefore, in this study, the effect of heat therapy (half bath 42 ± 0.5°C for 30 min) on irisin circulation levels as an exercise alternative for middle-aged obese women after menopause was investigated. Subjects were 33 women aged 49.54 ± 6.04 years, with parameters of height, 160.12 ± 4.33 cm, weight, 69.71 ± 7.52 kg, body surface area 1.73 ± 0.13 m2, body mass index, 27.19 ± 3.40 kg/m2. The results suggest that circulating irisin levels showed a significant increase after one-time thermotherapy (TH-1). However, the increase in circulating irisin levels after 15 treatments (TH-15, 5 days/week, 3 weeks) was significantly varied. The level of adiponectin, which increases fatty oxidation to reduce fatty deposition, increased significantly at TH-1, but further increased at TH-15, which was significantly different from the level of TH-1. In addition, the basic serum free fatty acid (FFA) level was significantly increased at TH-15 compared to TH-1. Significant differences were also found in the lipid profile (body mass index, waist circumference, and % body fat). Thermotherapy can significantly increase the tympanic temperature and induce changes in circulating irisin and adiponectin levels. Thus, it resulted in positive changes in FFA and lipid profiles. Therefore, repeated thermotherapy is effective in increasing circulating irisin levels in postmenopausal obese women.
Collapse
Affiliation(s)
- Seung-Jea Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Tae-Wook Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Tae-Hwan Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - In-Ho Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Eun-Chul Jang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Soon-Chan Kwon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Hye-Jin Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Hwan Choi
- Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea,Correspondence Jeong-Beom Lee, E-mail:
| |
Collapse
|
6
|
Mafra FFP, Macedo MM, Lopes AV, do Nascimento Orphão J, Teixeira CDB, Gattai PP, Boim MA, Torres da Silva R, do Nascimento FD, Bjordal JM, Lopes-Martins RÁB. 904 nm Low-Level Laser Irradiation Decreases Expression of Catabolism-Related Genes in White Adipose Tissue of Wistar Rats: Possible Roles of Laser on Metabolism. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:11-18. [PMID: 31846390 DOI: 10.1089/photob.2018.4609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Adipose tissue is the main energy storage tissue in the body. Its catabolic and anabolic responses depend on several factors, such as nutritional status, metabolic profile, and hormonal signaling. There are few studies addressing the effects of laser photobiomodulation (PBM) on adipose tissue and results are controversial. Objective: Our purpose was to investigate the metabolic effects of PBM on adipose tissue from Wistar rats supplemented or not with caffeine. Materials and methods: Wistar rats were divided into four groups: control (CTL), laser-treated [CTL (L)], caffeine (CAF), and caffeine+PBM [CAF (L)]. Blood was extracted for quantification of triglyceride and cholesterol levels and white adipose tissues were collected for analysis. We evaluated gene expression in the adipose tissue for the leptin receptor, lipase-sensitive hormone, tumor necrosis factor alpha, and beta adrenergic receptor. Results: We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL. Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12; p = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881; p = 0.003). Conclusions: Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue.
Collapse
Affiliation(s)
- Fernando F P Mafra
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Michel M Macedo
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Arthur Vecchi Lopes
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | | | | | - Pedro P Gattai
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Mirian A Boim
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | - Jan Magnus Bjordal
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, Institute of Research and Development, University of Vale do Paraíba-UNIVAP, São José dos Campos, São Paulo, Brazil.,Post-Graduate Program in Pharmacology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable Sensors for Biochemical Sweat Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:1-22. [PMID: 30786214 DOI: 10.1146/annurev-anchem-061318-114910] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.
Collapse
Affiliation(s)
- Amay J Bandodkar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Epicore Biosystems, Inc., Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Departments of Electrical Engineering and Computer Science, Neurological Surgery, Chemistry, and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
8
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
9
|
Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016; 21:molecules21080974. [PMID: 27472311 PMCID: PMC6273298 DOI: 10.3390/molecules21080974] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 12/05/2022] Open
Abstract
Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.
Collapse
|
10
|
Outlaw JJ, Wilborn CD, Smith-Ryan AE, Hayward SE, Urbina SL, Taylor LW, Foster CA. Acute effects of a commercially-available pre-workout supplement on markers of training: a double-blind study. J Int Soc Sports Nutr 2014; 11:40. [PMID: 25302053 PMCID: PMC4190923 DOI: 10.1186/s12970-014-0040-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre-workout supplements containing numerous ingredients claim to increase performance and strength. Product-specific research is important for identifying efficacy of combined ingredients. The purpose of this study was to evaluate the effects of a proprietary pre-workout dietary supplement containing creatine monohydrate, beta-alanine, L-Tarurine, L-Leucine, and caffeine, on anaerobic power, muscular strength, body composition, and mood states. METHODS In a double-blind, randomized, matched-pair design, twenty male subjects (mean ± SD; 22.4 ± 9.5 yrs, 76.9 ± 11.2 kg, 22.7 ± 9.5% body fat), consumed either 30 g of a pre-workout supplement (SUP) or maltodextrin placebo (PLC) 30 minutes before a resistance training workout, after completing baseline testing. Body composition was determined via dual-energy x-ray absorptiometry (DEXA). Subjects completed 12 vertical jumps for height (VJ) and one repetition maximum (1RM) and repetitions to failure lifts on bench (BPM) and leg press (LPM). Finally, subjects completed a Wingate power test on a cycle ergometer [mean power (WMP) and peak power (WPP)]. After baseline testing, participants completed eight days of supplementation and four split-body resistance-training bouts. Side effect questionnaires were completed daily 30 minutes after consuming the supplement. Subjects completed post-supplement testing on Day 8. Data were analyzed utilizing a 2 × 2 repeated measures ANOVA [treatment (PLC vs SUP) × time (T1 vs T2)] and ninety-five percent confidence intervals. RESULTS There were no significant treatment × time interactions (p > 0.05). There were no significant changes in %body fat (%BF; ∆-0.43 ± 0.58; p = 0.920), fat mass (∆-2.45 ± 5.72; p = 0.988), or lean body mass (LBM; 10.9 ± 12.2; p = 0.848). 95% CI demonstrated significant LBM increases for both groups. There was a main effect for time for WPP (∆100.5 ± 42.7W; p = 0.001), BPM (∆8.0 ± 12.9 lbs; p = 0.001), and LPM (∆80.0 ± 28.8 lbs; p = 0.001), with no significant differences between treatments. There was no significant difference in mood states between groups or over time. CONCLUSION The proprietary pre-workout blend combined with eight days of training did not significantly (ANOVA) improve body composition or performance. While not significant, greater gains in LPM were demonstrated in the SUP group for lean body mass and lower body strength. Future studies should evaluate more chronic effects of proprietary pre-workout blends on total training volume and performance outcomes.
Collapse
Affiliation(s)
- Jordan J Outlaw
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| | - Colin D Wilborn
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina Chapel Hill, 209 Fetzer Hall, CB# 8700, Chapel Hill 27599, NC, USA
| | - Sara E Hayward
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| | - Stacie L Urbina
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| | - Lem W Taylor
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| | - Cliffa A Foster
- Human Performance Lab, University of Mary Hardin-Baylor, 900 College Street, Belton 76513, TX, USA
| |
Collapse
|
11
|
The Effects of Caffeine Ingestion Before Passive Heat Loading on Serum Leptin Levels in Humans. Appl Biochem Biotechnol 2013; 171:1253-61. [DOI: 10.1007/s12010-013-0296-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
|
12
|
Caffeine Increases Sweating Sensitivity via Changes in Sudomotor Activity During Physical Loading. J Med Food 2011; 14:1448-55. [DOI: 10.1089/jmf.2010.1534] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|