1
|
Liu X, Hu Q, Shen Y, Wu Y, Gao L, Xu X, Hao G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure-Activity Relationship. Metabolites 2024; 14:561. [PMID: 39452942 PMCID: PMC11510070 DOI: 10.3390/metabo14100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Excessive reactive oxygen species (ROS) can lead to oxidative stress, which has become an urgent problem requiring effective solutions. Due to the drawbacks of chemically synthesized antioxidants, there is a growing interest in natural antioxidants, particularly antioxidant peptides. Methods: By reviewing recent literature on antioxidant peptides, particularly those extracted from various parts of fish, summarize which fish by-products are more conducive to the extraction of antioxidant peptides and elaborate on their characteristics. Results: This article summarizes recent advancements in extracting antioxidant peptides from fish processing by-products, Briefly introduced the purification and identification process of antioxidant peptides, specifically focusing on the extraction of antioxidant peptides from various fish by-products. Additionally, this article comprehensively reviews the relationship between amino acid residues that compose antioxidant peptides and their potential mechanisms of action. It explores the impact of amino acid types, molecular weight, and structure-activity relationships on antioxidant efficacy. Conclusions: Different amino acid residues can contribute to the antioxidant activity of peptides by scavenging free radicals, chelating metal ions, and modulating enzyme activities. The smaller the molecular weight of the antioxidant peptide, the stronger its antioxidant activity. Additionally, the antioxidant activity of peptides is influenced by specific amino acids located at the C-terminus and N-terminus positions. Simultaneously, this review provides a more systematic analysis and a broader perspective based on existing research, concluded that fish viscera are more favorable for the extraction of antioxidant peptides, providing new insights for the practical application of fish by-products. This could increase the utilization of fish viscera and reduce the environmental pollution caused by their waste, offering valuable references for the study and application of antioxidant peptides from fish by-products.
Collapse
Affiliation(s)
- Xinru Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Qiuyue Hu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yafang Shen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yuxin Wu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (X.L.)
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| |
Collapse
|
2
|
Bashir KMI, Chakniramol S, Mansoor S, Jahn A, Cho MG, Choi JS. Antioxidant Activity of Protein Hydrolysates from Redlip Mullet ( Chelon haematocheilus) Muscle and Byproducts. Foods 2024; 13:3009. [PMID: 39335938 PMCID: PMC11431201 DOI: 10.3390/foods13183009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Fish muscle and byproducts represent a valuable source of bioactive compounds, with their protein hydrolysates exhibiting noteworthy antioxidant properties. This study assessed the antioxidant activity of protein hydrolysates derived from the muscle and byproducts of redlip mullet (Chelon haematocheilus), utilizing different proteases (Neutrase, Alcalase, and Protamex). Hydrolysates were prepared from various parts of the fish, including muscle (white and red meat) and byproducts (frames, head, viscera, fins, skin, and scales). The enzymatic hydrolysis resulted in the highest degree of hydrolysis, achieving 83.24 ± 1.45% for skin at 60 min and 82.14 ± 4.35% for head at 30 min, when treated with Neutrase. Frames treated with Neutrase exhibited the highest protein concentration, measured at 1873.01 ± 71.11 µg/mL at 15 min. Significantly, skin hydrolysates treated with Protamex showed the highest DPPH• scavenging activity (70.07 ± 3.99% at 120 min), while those treated with Alcalase demonstrated the highest ABTS• scavenging activity (93.47 ± 0.02% at 15 min). The highest superoxide dismutase (SOD) activity (92.01 ± 1.47%) was observed in head hydrolysates treated with Protamex after 90 min. These results suggest that C. haematocheilus protein hydrolysates possess significant antioxidant activity within a short time frame of less than 120 min.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Republic of Korea
| | - Sukwasa Chakniramol
- Department of Bio-Chemical Engineering, Division of Energy and Bioengineering, Dongseo University, Busan 47011, Republic of Korea
| | - Sana Mansoor
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Alexander Jahn
- Bioprocess Technology, Management Center Innsbruck (MCI), 6020 Tyrol, Austria
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Republic of Korea
| | - Jae-Suk Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
3
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
4
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Razzaq W, Masood Z, Hassan HU, Benzer S, Nadeem K, Arai T. An investigation on protein and amino acid contents in scales and muscles of pomfret Parastromateus niger (Bloch, 1795) and Pampus argenteus (Eupharasen, 1788). BRAZ J BIOL 2024; 84:e258880. [DOI: 10.1590/1519-6984.258880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract The present investigation was aimed to examine the percentage quantity of protein and amino acids in scales and muscles of Pampus argenteus and Parastromateus niger gathered from the local fish market of district Quetta of Balochistan. About 80 specimens of these two species, i.e., Pampus argenteus (N=40) and Parastromateus niger (N = 40), were collected from April 2017 to May 2018. In general, crude protein content was high in scales, that is, 71.03% in Parastromateus niger and 52.11% in Pampus argenteus, as well as in muscles of two Pomfret species of fishes i.e., 63.44% in Pampus argenteus and 60.99% in Parastromateus niger on a dry-weight basis, respectively. Likewise, the muscles and scales of Parastromateus niger reveal well compositions of amino acids that include proline was found to be high, and methionine was less than other amino acids, whereas threonine was found high in the scales of Pampus argenteus, but methionine was observed in lesser amount. However, the amino acids found in Pampus argenteus muscles also showed different compositions, such as lysine was found to be high, but histidine was less, respectively. In comparison, amino acids like tryptophan and cysteine were not detected in both scales and muscles of thesePomfret species of fishes. Thus, this study was based on analyzing the utilization of both Pomfret species of scales and meat whether they could have values as good supplements of both protein and certain kinds of essential amino acids in animal diets.
Collapse
Affiliation(s)
- W. Razzaq
- Sardar Bhadur Khan Women’s University, Pakistan
| | - Z. Masood
- Sardar Bhadur Khan Women’s University, Pakistan
| | - H. U. Hassan
- University of Karachi, Pakistan; Ministry of National Food Security and Research, Pakistan
| | | | | | - T. Arai
- Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
6
|
Zhang J, Akyol Ç, Meers E. Nutrient recovery and recycling from fishery waste and by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119266. [PMID: 37844400 DOI: 10.1016/j.jenvman.2023.119266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The circular bio-based economy offers great untapped potential for the food industry as possible valuable products and energy can be recovered from food waste. This can promote more sustainable and resilient food systems in Europe in follow-up of the European Commission's Farm to Fork strategy and support the global transition to more sustainable agri-food systems with the common agricultural and fisheries policies. With its high nutrient content, waste and by-products originating from fish and seafood industry (including aquaculture) are one of the most promising candidates to produce alternative fertilising products which can play a crucial role to replace synthetic mineral fertilisers. Whereas several studies highlighted the opportunities to recover valuable compounds from fishery waste, study towards their potential for the production of fertilising products is still scarce. This study presents an extensive overview of the characteristics of fishery waste and by-products (i.e., fish processing waste, fish sludge, seafood waste/by-products), the state-of-the-art nutrient recovery technologies and recovered nutrients as fertilising products from these waste streams. The European Commission has already adopted a revised Fertilising Products Regulation (EU) 2019/1009 providing opportunities for fertilising products from various bio-based origins. In frame of this opportunity, we address the quality and safety aspects of the fishery waste-derived fertilising products under these criteria and highlight possible obstacles on their way to the market in the future. Considering its high nutrient content and vast abundance, fish sludge has a great potential but should be treated/refined before being applied to soil. In addition to the parameters currently regulated, it is crucial to consider the salinity levels of such fertilising products as well as the possible presence of other micropollutants especially microplastics to warrant their safe use in agriculture. The agronomic performance of fishery waste-derived fertilisers is also compiled and reported in the last section of this review paper, which in most cases perform equally to that of conventional synthetic fertilisers.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Çağrı Akyol
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Erik Meers
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Nag M, Lahiri D, Dey A, Sarkar T, Pati S, Joshi S, Bunawan H, Mohammed A, Edinur HA, Ghosh S, Ray RR. Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Front Nutr 2022; 9:879929. [PMID: 35464014 PMCID: PMC9024408 DOI: 10.3389/fnut.2022.879929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ankita Dey
- Department of Pathology, Belle Vue Clinic, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Sanket Joshi
- Central Analytical and Applied Research Unit, Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Kampus Jeli, Jeli, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Hisham Atan Edinur,
| | - Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
- Rina Rani Ray,
| |
Collapse
|
8
|
Antiaging Potential of Peptides from Underused Marine Bioresources. Mar Drugs 2021; 19:md19090513. [PMID: 34564175 PMCID: PMC8466736 DOI: 10.3390/md19090513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Aging is a biological process that occurs under normal conditions and in several chronic degenerative diseases. Bioactive natural peptides have been shown to improve the effects of aging in cell and animal models and in clinical trials. However, few reports delve into the enormous diversity of peptides from marine organisms. This review provides recent information on the antiaging potential of bioactive peptides from underused marine resources, including examples that scavenge free radicals in vitro, inhibit cell apoptosis, prolong the lifespan of fruit flies and Caenorhabditis elegans, suppress aging in mice, and exert protective roles in aging humans. The underlying molecular mechanisms involved, such as upregulation of oxidase activity, inhibition of cell apoptosis and MMP-1 expression, restoring mitochondrial function, and regulating intestinal homeostasis, are also summarized. This work will help highlight the antiaging potential of peptides from underused marine organisms which could be used as antiaging foods and cosmetic ingredients in the near future.
Collapse
|
9
|
Phadke GG, Rathod NB, Ozogul F, Elavarasan K, Karthikeyan M, Shin KH, Kim SK. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar Drugs 2021; 19:md19090480. [PMID: 34564142 PMCID: PMC8468292 DOI: 10.3390/md19090480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure–function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.
Collapse
Affiliation(s)
- Girija Gajanan Phadke
- Network for Fish Quality Management & Sustainable Fishing (NETFISH), The Marine Products Export Development Authority (MPEDA), Navi Mumbai 410206, Maharashtra, India;
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402109, Maharashtra, India;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Krishnamoorthy Elavarasan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Kochi 682029, Kerala, India;
| | - Muthusamy Karthikeyan
- The Marine Products Export Development Authority (MPEDA), Kochi 682036, Kerala, India;
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-400-5539 or +82-10-7223-6375
| |
Collapse
|
10
|
Mutalipassi M, Esposito R, Ruocco N, Viel T, Costantini M, Zupo V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021; 10:foods10071495. [PMID: 34203174 PMCID: PMC8303620 DOI: 10.3390/foods10071495] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Correspondence: (M.C.); (V.Z.)
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
- Correspondence: (M.C.); (V.Z.)
| |
Collapse
|
11
|
Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Mar Drugs 2021; 19:338. [PMID: 34199233 PMCID: PMC8231949 DOI: 10.3390/md19060338] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Fish discards and by-products can be transformed into high value-added products such as fish protein hydrolysates (FPH) containing bioactive peptides. Protein hydrolysates were prepared from different parts (whole fish, skin and head) of several discarded species of the North-West Spain fishing fleet using Alcalase. All hydrolysates had moisture and ash contents lower than 10% and 15%, respectively. The fat content of FPH varied between 1.5% and 9.4% and had high protein content (69.8-76.6%). The amino acids profiles of FPH are quite similar and the most abundant amino acids were glutamic and aspartic acids. All FPH exhibited antioxidant activity and those obtained from Atlantic horse mackerel heads presented the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power and Cu2+ chelating activity. On the other hand, hydrolysates from gurnard heads showed the highest ABTS radical scavenging activity and Fe2+ chelating activity. In what concerns the α-amylase inhibitory activity, the IC50 values recorded for FPH ranged between 5.70 and 84.37 mg/mL for blue whiting heads and whole Atlantic horse mackerel, respectively. α-Glucosidase inhibitory activity of FPH was relatively low but all FPH had high Angiotensin Converting Enzyme (ACE) inhibitory activity. Considering the biological activities, these FPH are potential natural additives for functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Andreia Henriques
- Division of Aquaculture and Upgrading and Biospropecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (A.H.); (R.M.); (N.M.B.)
| | - José A. Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), R/Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (J.V.)
| | - Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), R/Eduardo Cabello 6, 36208 Vigo, Spain; (J.A.V.); (J.V.)
| | - Rogério Mendes
- Division of Aquaculture and Upgrading and Biospropecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (A.H.); (R.M.); (N.M.B.)
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture and Upgrading and Biospropecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (A.H.); (R.M.); (N.M.B.)
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Carla Pires
- Division of Aquaculture and Upgrading and Biospropecting (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (A.H.); (R.M.); (N.M.B.)
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
12
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
13
|
Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10071-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
15
|
Petsantad P, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Chaitanawisuti N, Karnchanatat A. The antioxidant potential of peptides obtained from the spotted babylon snail (Babylonia areolata) in treating human colon adenocarcinoma (Caco-2) cells. RSC Adv 2020; 10:25746-25757. [PMID: 35518590 PMCID: PMC9055304 DOI: 10.1039/d0ra03261a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
This research study investigated the free radical-scavenging activities of peptides which were obtained from the protein hydrolysates of the spotted babylon snail using a combination of pepsin and pancreatin proteolysis which can replicate the conditions of gastrointestinal digestion. In this study, spotted babylon protein hydrolysate (SPH) derived from a sequential 3 hour digestion, first with pepsin and then with pancreatin, was examined. SPH was fractionated using molecular weight cut-off membranes for 10 kDa, 5 kDa, 3 kDa, and 0.65 kDa. It was found that the MW < 0.65 kDa fraction provided the greatest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazl (DPPH), and nitric oxide (NO) radical scavenging activity. Three subfractions of the MW < 0.65 kDa fraction were then generated via RP-HPLC. The subfraction which subsequently demonstrated the greatest free radical scavenging activity was F3, which was accordingly chosen for further investigation commencing with quadrupole-time-of-flight-electron spin induction-mass spectrometry-based de novo peptide sequencing. This resulted in the identification of a pair of novel peptides: His–Thr–Tyr–His–Glu–Val–Thr–Lys–His (HTYHEVTKH), and Trp–Pro–Val–Leu–Ala–Tyr–His–Phe–Thr (WPVLAYHF). The WPVLAYHF peptide exhibited greater antioxidant activity. The study also confirmed that the F3 sub-fraction was able to prevent hydroxyl radicals from causing DNA damage by conducting tests which involved the pKS, pUC19, and pBR322 plasmids using the Fenton reaction. In addition, cellular antioxidant activity was demonstrated by two synthetic peptides toward the human adenocarcinoma colon (Caco-2) cell line, with the potency of the activity dependent upon the peptide concentration. The isolation and subsequent identification of the two novel antioxidant peptides, HTYHEVTKH, and WPVLAYHF from the spotted babylon snail was achieved. In the Caco-2 cell line, two synthetic peptides produced a dose-dependent response on antioxidant activity.![]()
Collapse
Affiliation(s)
- Putcha Petsantad
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
16
|
Marine Waste Utilization as a Source of Functional and Health Compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:187-254. [PMID: 30678815 DOI: 10.1016/bs.afnr.2018.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consumer demand for convenience has led to large quantities of seafood being value-added processed before marketing, resulting in large amounts of marine by-products being generated by processing industries. Several bioconversion processes have been proposed to transform some of these by-products. In addition to their relatively low value conventional use as animal feed and fertilizers, several investigations have been reported that have demonstrated the potential to add value to viscera, heads, skins, fins, trimmings, and crab and shrimp shells by extraction of lipids, bioactive peptides, enzymes, and other functional proteins and chitin that can be used in food and pharmaceutical applications. This chapter is focused on reviewing the opportunities for utilization of these marine by-products. The chapter discusses the various products and bioactive compounds that can be obtained from seafood waste and describes various methods that can be used to produce these products with the aim of highlighting opportunities to add value to these marine waste streams.
Collapse
|
17
|
Characterization and antioxidant activity of Maillard reaction products from a scallop (Patinopecten yessoensis) gonad hydrolysates-sugar model system. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9903-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Characterization of phospholipids from Pacific saury ( Cololabis saira ) viscera and their neuroprotective activity. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Affane F, Louala S, El Imane Harrat N, Bensalah F, Chekkal H, Allaoui A, Lamri-Senhadji M. Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats. Life Sci 2018; 199:16-22. [PMID: 29505784 DOI: 10.1016/j.lfs.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
AIMS Fish by-products valorization on account of their richness in bioactive compounds may represent a better alternative to marine products with a view to economic profitability and sustainable development. In this study, we compared the effect of sardine by-product proteins (SBy-P), with those of the fillets (SF-P) or casein (Cas), on growth parameters, serum leptin level, lipids disorders, lipid peroxidation and reverse cholesterol transport, in diet-induced obese rats. MAIN METHODS Obesity was induced by feeding rats a high-fat diet (20% sheep fat), during 12 weeks. At body weight (BW) of 400 ± 20 g, eighteen obese rats were divided into three homogenous groups and continue to consume the high-fat diet for 4 weeks containing either, 20% SBy-P, SF-P or Cas. KEY FINDINGS The results showed that SBy-P, compared to SF-P and Cas, efficiently reduced food intake (FI), BW gain and serum leptin level, and improved blood lipids levels and reverse cholesterol transport by reducing total cholesterol (TC), triacylglycerols (TG) and low-density lipoprotein cholesterol (LDL-HDL1-C) serum levels, increasing the level of high-density lipoprotein cholesterol (HDL2-C and HDL3-C), and enhancing lecithin: cholesterol acyltransferase (LCAT) activity. Furthermore, they attenuated lipid peroxidation by increasing atheroprotective activity of the paraoxonase-1 (PON-1). SIGNIFICANCE Sardine by-product proteins due to their richness in certain essential amino acids, highlight weight-loss, lipid-lowering, antioxidant and anti-atherogenic potentials, contributing to the improvement of the complications associated with obesity.
Collapse
Affiliation(s)
- Fouad Affane
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Sabrine Louala
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Nour El Imane Harrat
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Fatima Bensalah
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Hadjera Chekkal
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Amine Allaoui
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Myriem Lamri-Senhadji
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria.
| |
Collapse
|
20
|
Wang X, Yu H, Xing R, Chen X, Liu S, Li P. Optimization of antioxidative peptides from mackerel ( Pneumatophorus japonicus) viscera. PeerJ 2018; 6:e4373. [PMID: 29473003 PMCID: PMC5816966 DOI: 10.7717/peerj.4373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
Mackerel (Pneumatophorus japonicus) viscera contain large amount of protein. We used five proteases to hydrolyze the viscera, and the hydrolysate treated by neutrase exhibited the highest nitrogen recovery (NR). Then we optimized the preparation conditions for mackerel viscera hydrolysate (MVH) by response surface methodology and investigated the antioxidant activity of MVH. The optimal conditions were as follows: enzyme concentration of 1,762.87 U/g, pH of 6.76, temperature of 43.75 °C, extraction time of 6.0 h and water/material ratio of 20.37 (v/w), and the maximum NR was 37.84%. Furthermore, the molecular weight distribution of MVH was almost below 3,000 Da determined by TSK G2000 SWXL gel filtration chromatography, and the MVH exhibited good antioxidant activities in various in vitro assays, including DPPH radical, hydroxyl radical and superoxide anion scavenging activities, reducing power and similar effectivelness as butylated hydroxytoluene and Vitamin E to inhibit lipid peroxidation. The results suggested that MVH could be used as a potential source of antioxidant peptide in food industries.
Collapse
Affiliation(s)
- Xueqin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Atef M, Mahdi Ojagh S. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
23
|
Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 81:109-159. [PMID: 28317603 DOI: 10.1016/bs.afnr.2016.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits.
Collapse
Affiliation(s)
- M Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| |
Collapse
|
24
|
Villamil O, Váquiro H, Solanilla JF. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem 2016; 224:160-171. [PMID: 28159251 DOI: 10.1016/j.foodchem.2016.12.057] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
Abstract
The aquaculture and fishery chain is an important part of the economy of many countries around the world; in recent years it has experienced significant growth that generates more and more quantities of waste, which are mostly discarded, impacting the environment, despite having a useful chemical composition in various industrial sectors. This article presents a review of the agroindustrial potential of fish wastes, especially viscera, as a source for obtaining native protein and hydrolysates, explaining their production process, chemical composition and functional and bioactive properties that are important to the agricultural, cosmetic, pharmaceutical, food and nutraceutical industry.
Collapse
Affiliation(s)
- Oscar Villamil
- Facultad de Ingeniería Agronómica, Universidad del Tolima. Ibagué, Colombia
| | - Henry Váquiro
- Facultad de Ingeniería Agronómica, Universidad del Tolima. Ibagué, Colombia
| | - José F Solanilla
- Facultad de Ingeniería Agronómica, Universidad del Tolima. Ibagué, Colombia.
| |
Collapse
|
25
|
Sila A, Bougatef A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.007] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Identification of antioxidant peptides from protein hydrolysates of scallop (Patinopecten yessoensis) female gonads. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2579-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Kang N, Ko SC, Samarakoon K, Kim EA, Kang MC, Lee SC, Kim J, Kim YT, Kim JS, Kim H, Jeon YJ. Purification of antioxidative peptide from peptic hydrolysates of Mideodeok (Styela clava) flesh tissue. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0112-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Chalamaiah M, Dinesh kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem 2012; 135:3020-38. [DOI: 10.1016/j.foodchem.2012.06.100] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/30/2012] [Accepted: 06/27/2012] [Indexed: 01/09/2023]
|
29
|
Nazeer RA, Kumar NSS, Jai Ganesh R. In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides 2012; 35:261-8. [PMID: 22504498 DOI: 10.1016/j.peptides.2012.03.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Peptide from croaker (Otolithes ruber) muscle protein hydrolysate was purified, characterized and evaluated for its in vitro and in vivo antioxidant activity. Results showed that purified peptide contained the amino acid sequence as Lys-Thr-Phe-Cys-Gly-Arg-His (861.6Da), which were expected to contribute to its antioxidant activities. This peptide efficiently quenched 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals (84.5±1.2 and 62.4±2.9%), and successfully inhibits the lipid peroxidation and DNA damage and proven to be a potent antioxidant at different in vitro systems. It also improved the endogenous cellular antioxidant enzymes in Wistar rat by increasing the activities of catalase (CAT), glutathione-S-transferase (GST) and superoxide dismutase (SOD) after supplementation of the peptide (283.6±7.25, 4.3±0.78 and 28.42±1.97) compared to the negative control (196.4±5.65, 1.3±0.45 and 15.1±0.35). Therefore, croaker muscle peptide can increase an endurance capacity and facilitate recovery from oxidative stress.
Collapse
Affiliation(s)
- R A Nazeer
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai, Tamilnadu, India.
| | | | | |
Collapse
|
30
|
Sampath Kumar NS, Nazeer RA. In vivoantioxidant activity of peptide purified from viscera protein hydrolysate of horse mackerel (Magalaspis cordyla). Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03002.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|