1
|
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3283. [PMID: 36501323 PMCID: PMC9739071 DOI: 10.3390/plants11233283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Samantha Ottani Rhein
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Lee A. Meisel
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Jocelyn Fuentes
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Hernan Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Andrés R. Schwember
- Departament of Plant Sciences, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | |
Collapse
|
2
|
Bagchi TB, Chattopadhyay K, Sivashankari M, Roy S, Kumar A, Biswas T, Pal S. Effect of different processing technologies on phenolic acids, flavonoids and other antioxidants content in pigmented rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Shao Y, Hu Z, Liu C, Xu Q, Zhang H, Yan Q, Zhu D, Zhu Z. Phenolic acids and phytosterols in rice grains and wheat flours consumed in five regions of China. J Food Sci 2021; 86:1878-1892. [PMID: 33884623 DOI: 10.1111/1750-3841.15704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
Phenolic acids and phytosterols, the main functional compounds in cereals, could promote wellbeing and reduce the risks of diet-related diseases. This study aimed to demonstrate phenolic acid and phytosterol profiles in rice grains and wheat flours, and estimate their intakes in five geographical regions and among different age groups. Phenolic acids and phytosterols mainly existed in bound form, and the whole rice grain had high amount of 161.39 to 368.74 µg/g and 37.50 to 93.31 mg/ 100 g, respectively. In total, nine phenolic acids and six phytosterols were detected with ferulic and p-coumaric acid, and β-sitosterol the most abundant. The dietary intakes of phenolic acids and phytosterols were calculated combined with the dietary foods intake data of Chinese people. The intakes of total phenolic acids and phytosterols from rice grains and wheat flours varied across different regions with Beijing the highest among the five regions. At the age of 2 to 70 years, the average intakes of phenolic acids and phytosterols from rice and wheat flours were 7.74 to 17.52 and 58.02 to 135.61 mg/sp/day, respectively. If 3-ounce of polished rice was replaced by black rice grain, the predicted intakes of total phenolic acids and phytosterols from rice grains and wheat flours would increase by at least 196% and 68%, respectively, especially for free phenolic acids and phytosterols. PRACTICAL APPLICATION: This study would help the consumers know how much phenolic acids and phytosterols they would get from 3 ounces of black rice in a reasonable intake of staple food but shift away other kinds of foods. It could also provide inspirations for food industries to explore the functional cereal foods that are rich in phenolic acids and phytosterols for different regions and different age groups.
Collapse
Affiliation(s)
- Yafang Shao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.,Laboratory of Quality and Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310006, China
| | - Zhanqiang Hu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.,Laboratory of Quality and Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310006, China
| | - Chengzhi Liu
- Hangzhou Digital-Micro Biotech Co. Ltd, Hangzhou, 310000, China
| | - Qingyu Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Huali Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qin Yan
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Dawei Zhu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Zhiwei Zhu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.,Laboratory of Quality and Safety Risk Assessment for Rice (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310006, China
| |
Collapse
|
4
|
Monitoring Phenolic Compounds in Rice during the Growing Season in Relation to Fungal and Mycotoxin Contamination. Toxins (Basel) 2020; 12:toxins12050341. [PMID: 32455855 PMCID: PMC7291125 DOI: 10.3390/toxins12050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Total phenolic content (TPC) and several phenolic acids present in rice grains were compared with fungal infection and mycotoxin presence throughout the growing season. Samples of 4 rice varieties were collected in 2018 and 2019 at 3 different plant phenological stages. Total fungal and main mycotoxigenic fungi incidence were checked and mycotoxin content was analysed. On the same samples, TPC and the concentration of 8 main phenolic acids (chlorogenic acid, caffeic acid, syringic acid, 4-hydroxybenzoic acid (4-HBA), p-coumaric acid, ferulic acid, protocatecuic acid and gallic acid) were measured. The results showed significant differences between years for both fungal incidence and mycotoxin presence. In 2018 there was a lower fungal presence (42%) than in 2019 (57%) while, regarding mycotoxins, sterigmatocystin (STC) was found in almost all the samples and at all growing stages while deoxynivalenol (DON) was found particularly during ripening. An interesting relationship was found between fungal incidence and TPC, and some phenolic acids seemed to be more involved than others in the plant defense system. Ferulic acid and protocatecuic acid showed a different trend during the growing season depending on fungal incidence and resulted to be positively correlated with p-coumaric acid and 4-HBA that seem involved in mycotoxin containment in field.
Collapse
|
5
|
Shao Y, Hu Z, Yu Y, Mou R, Zhu Z, Beta T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chem 2017; 239:733-741. [PMID: 28873629 DOI: 10.1016/j.foodchem.2017.07.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 01/20/2023]
Abstract
Soluble-free, soluble-conjugated, insoluble-bound phenolics and antioxidant activity, flavonoid (TFC), proanthocyanidins (TPAC), anthocyanins and minerals of fifteen whole rice grains with different colors were investigated. Soluble-free protocatechuic and vanillic acids were only quantified in black rice, which had the most quantities. Non-pigmented rice had no detectable conjugated protocatechuic and 2,5-dihydroxybenzoic acids both of which were found in black and red rice, respectively. The main bound phenolic acids were ferulic and p-coumaric, as well as 2,5-dihydroxybenzoic in red rice and protocatechuic and vanillic acids in black rice. Soluble-conjugated phenolics, TFC, and anthocyanins were negatively correlated with L∗, b∗, C and H° values. TPAC was positively correlated with a∗ (P<0.01). Protocatechuic, vanillic, syringic and ferulic acids were associated with TPC and antioxidant activity in the soluble-conjugated fraction while protocatechuic and ferulic acid were correlated with those in the insoluble-bound fraction. Principal component analysis divided samples into non-pigmented, red and black rice groups.
Collapse
Affiliation(s)
- Yafang Shao
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhanqiang Hu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yonghong Yu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Renxiang Mou
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhiwei Zhu
- China National Rice Research Institute, Hangzhou 310006, China.
| | - Trust Beta
- University of Manitoba, Department of Food and Human Nutritional Sciences, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
6
|
Gong ES, Luo SJ, Li T, Liu CM, Zhang GW, Chen J, Zeng ZC, Liu RH. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem 2017; 227:432-443. [PMID: 28274454 DOI: 10.1016/j.foodchem.2017.01.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
Abstract
The phytochemical content and antioxidant activity of eight varieties of brown rice (BR) are reported. The total phenolic contents of BR ranged from 72.45 to 120.13mg of gallic acid equiv./100g. The phenolics from bound fraction contributed 40.6-50.2% of the total phenolic content. The total flavonoid contents of BR ranged from 75.90 to 112.03mg catechin equiv./100g. The flavonoids from the bound fraction contributed 26.9-48.2% of total flavonoids. Trans-ferulic acid was the predominant phenolic acid in BR. Total trans-ferulic acid content ranged from 161.42 to 374.81μg/100g. The percentage of trans-ferulic acid in bound fraction ranged from 96.4% to 99.2%. Only α- and γ-tocopherols and -tocotrienols were detected in BR with α-tocopherol and γ-tocotrienol being the predominant. The total peroxyl radical scavenging capacity (PSC) of BR ranged from 18.29 to 40.33mg vitamin C equiv./100g. The bound fraction contributed 67.2-77.2% of total PSC.
Collapse
Affiliation(s)
- Er Sheng Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China; Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Shun Jing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Cheng Mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China.
| | - Guo Wen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zi Cong Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
7
|
Ryu D, Koh E. Influence of Cooking Methods on Free and Bound Phenolic Acids in Korean Black Rice. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dayeon Ryu
- Department of Food and Nutrition; College of Natural Science, Seoul Women's University; Nowon-gu Seoul 139-774 Korea
| | - Eunmi Koh
- Department of Food and Nutrition; College of Natural Science, Seoul Women's University; Nowon-gu Seoul 139-774 Korea
| |
Collapse
|
8
|
Dwivedi SL, Upadhyaya HD, Chung IM, De Vita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:763. [PMID: 27375635 PMCID: PMC4891577 DOI: 10.3389/fpls.2016.00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.
Collapse
Affiliation(s)
- Sangam L. Dwivedi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Agronomy, Kansas State UniversityManhattan, KS, USA
- UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | - Ill-Min Chung
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Silverio García-Lara
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Govindasamy Rajakumar
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Kanwar L. Sahrawat
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
9
|
Shao Y, Bao J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem 2015; 180:86-97. [DOI: 10.1016/j.foodchem.2015.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
|
10
|
Na JK, Kim JK, Kim DY, Assmann SM. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4023-33. [PMID: 25944928 PMCID: PMC4473998 DOI: 10.1093/jxb/erv207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest.
Collapse
Affiliation(s)
- Jong-Kuk Na
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Jae-Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| |
Collapse
|
11
|
Kim GR, Jung ES, Lee S, Lim SH, Ha SH, Lee CH. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules 2014; 19:15673-86. [PMID: 25268721 PMCID: PMC6271636 DOI: 10.3390/molecules191015673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022] Open
Abstract
Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.
Collapse
Affiliation(s)
- Ga Ryun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Crop Biotech Institute, College of Life Sciences, Kyung Hee University, Suwon 446-701, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
12
|
Huang Y, Lu WW, Chen B, Wu M, Li SG. Determination of 13 Phenolic Compounds in Rice Wine by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9939-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li N, Shi J, Wang K. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:574-581. [PMID: 24392851 DOI: 10.1021/jf404542d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phenolic products are highly demanded by the food and cosmetics industries and consumers due to their high antioxidant activities. To evaluate the potential of crabapples (Malus wild species) in preparing phenolic extracts, fruits of 10 crabapples grown in China were separately extracted with 80% (v/v) ethanol and ethyl acetate and the phenolic profiles, polyphenol (PC) and flavonoid contents (FC), and antioxidant activities of the extracts were analyzed. Chlorogenic acid, (-)-epicatechin, rutin, hyperin, and phlorizin appeared as the major phenolic compounds in all phenolic extracts. Ethanol extracts had PC of 302.83-1265.94 mg GAE/100g and FC of 352.45-2351.74 mg RE/100g, being 4.17 and 4.49 times those obtained in ethyl acetate extracts and much higher than those previously reported in apples. Malus wild species appeared as rich sources of phenolic compounds with high antioxidant activity, especially when high chlorogenic acid and rutin contents are emphasized.
Collapse
Affiliation(s)
- Nan Li
- College of Food Science and Engineering, Northwest A&F University , 28 Xinong Road, Yangling, Shaanxi Province 712100, China
| | | | | |
Collapse
|
14
|
Park SY, Lim SH, Ha SH, Yeo Y, Park WT, Kwon DY, Park SU, Kim JK. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6999-7007. [PMID: 23782237 DOI: 10.1021/jf401330e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.
Collapse
Affiliation(s)
- Soo-Yun Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|