1
|
A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022; 11:foods11030319. [PMID: 35159469 PMCID: PMC8834264 DOI: 10.3390/foods11030319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Bread is a food that is commonly recognized as a very convenient type of food, but it is also easily prone to microbial attack. As a result of bread spoilage, a significant economic loss occurs to both consumers and producers. For years, the bakery industry has sought to identify treatments that make bread safe and with an extended shelf-life to address this economic and safety concern, including replacing harmful chemical preservatives. New frontiers, on the other hand, have recently been explored. Alternative methods of bread preservation, such as microbial fermentation, utilization of plant and animal derivatives, nanofibers, and other innovative technologies, have yielded promising results. This review summarizes numerous research findings regarding the bio-preservation of bread and suggests potential applications of these techniques. Among these techniques, microbial fermentation using lactic acid bacteria strains and yeast has drawn significant interest nowadays because of their outstanding antifungal activity and shelf-life extending capacity. For example, bread slices with Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 inhibited fungal development for up to 21 days with the lowest contamination score. Moreover, various essential oils and plant extracts, such as lemongrass oil and garlic extracts, demonstrated promising results in reducing fungal growth on bread and other bakery products. In addition, different emerging bio-preservation strategies such as the utilization of whey, nanofibers, active packaging, and modified atmospheric packaging have gained considerable interest in recent days.
Collapse
|
2
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
4
|
Akyüz G, Mazı BG. Physicochemical and sensory characterization of bread produced from different dough formulations by
Kluyveromyces lactis. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Güliz Akyüz
- Department of Food Engineering, Agricultural Faculty Ordu University Ordu Turkey
| | - Bekir Gökçen Mazı
- Department of Food Engineering, Agricultural Faculty Ordu University Ordu Turkey
| |
Collapse
|
5
|
Liu C, Feng S, Wu Q, Huang H, Chen Z, Li S, Xu Y. Raw Material Regulates Flavor Formation via Driving Microbiota in Chinese Liquor Fermentation. Front Microbiol 2019; 10:1520. [PMID: 31333623 PMCID: PMC6620735 DOI: 10.3389/fmicb.2019.01520] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/18/2019] [Indexed: 02/01/2023] Open
Abstract
Raw material is important for flavors in fermented foods. Here, the effect of hulless barley on the microbiota in Chinese liquor was studied using two main cultivars (heilaoya and dulihuang). Six genera (Lactobacillus, Saccharomyces, Komagataella, Aspergillus, Pichia, and Weissella) were identified as flavor producers. Komagataella, mainly correlated with esters, dominated in heilaoya, and Pichia, mainly correlated with carbonyls, dominated in dulihuang. The Mantel test indicated reducing sugar drove the succession of microbiota (heilaoya: P = 0.001; dulihuang: P = 0.006). Especially, glucose (P = 0.0226) and fructose (P = 0.0168) presented the most significant correlations with Pichia and Komagataella, respectively. The simulative fermentation confirmed Komagataella phaffii QK2 grew better in heilaoya with more fructose, whereas Pichia fermentans PF grew better in dulihuang with more glucose. This work highlighted the effect of raw material on microbiota, which would be beneficial for regulating the quality of fermented foods.
Collapse
Affiliation(s)
- Chongchong Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China.,Suqian Industrial Technology Research Institute, Jiangnan University, Suqian, China
| | | | - Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China.,Suqian Industrial Technology Research Institute, Jiangnan University, Suqian, China
| | | | - Zhanxiu Chen
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong, China
| | - Shanwen Li
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China.,Suqian Industrial Technology Research Institute, Jiangnan University, Suqian, China
| |
Collapse
|
6
|
High-affinity transport, cyanide-resistant respiration, and ethanol production under aerobiosis underlying efficient high glycerol consumption by Wickerhamomyces anomalus. J Ind Microbiol Biotechnol 2019; 46:709-723. [PMID: 30680472 DOI: 10.1007/s10295-018-02119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 01/11/2023]
Abstract
Wickerhamomyces anomalus strain LBCM1105 was originally isolated from the wort of cachaça (the Brazilian fermented sugarcane juice-derived Brazilian spirit) and has been shown to grow exceptionally well at high amounts of glycerol. This paramount residue from the biodiesel industry is a promising cheap carbon source for yeast biotechnology. The assessment of the physiological traits underlying the W. anomalus glycerol consumption ability in opposition to Saccharomyces cerevisiae is presented. A new WaStl1 concentrative glycerol-H+ symporter with twice the affinity of S. cerevisiae was identified. As in this yeast, WaSTL1 is repressed by glucose and derepressed/induced by glycerol but much more highly expressed. Moreover, LBCM1105 aerobically growing on glycerol was found to produce ethanol, providing a redox escape to compensate the redox imbalance at the level of cyanide-resistant respiration (CRR) and glycerol 3P shuttle. This work is critical for understanding the utilization of glycerol by non-Saccharomyces yeasts being indispensable to consider their industrial application feeding on biodiesel residue.
Collapse
|
7
|
Debonne E, Van Bockstaele F, Samapundo S, Eeckhout M, Devlieghere F. The use of essential oils as natural antifungal preservatives in bread products. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1486239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Els Debonne
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Filip Van Bockstaele
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Simbarashe Samapundo
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food2Know, Ghent University , Gent, Belgium
| | - Mia Eeckhout
- Faculty of Bioscience Engineering, Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University , Ghent, Belgium
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Food2Know, Ghent University , Gent, Belgium
| |
Collapse
|
8
|
Axel C, Zannini E, Arendt EK. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 2018; 57:3528-3542. [PMID: 26980564 DOI: 10.1080/10408398.2016.1147417] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial spoilage of bread and the consequent waste problem causes large economic losses for both the bakery industry and the consumer. Furthermore the presence of mycotoxins due to fungal contamination in cereals and cereal products remains a significant issue. The use of conventional chemical preservatives has several drawbacks, necessitating the development of clean-label alternatives. In this review, we describe current research aiming to extend the shelf life of bread through the use of more consumer friendly and ecologically sustainable preservation techniques as alternatives to chemical additives. Studies on the in situ-production/-expression of antifungal compounds are presented, with special attention given to recent developments over the past decade. Sourdough fermented with antifungal strains of lactic acid bacteria (LAB) is an area of increasing focus and serves as a high-potential biological ingredient to produce gluten-containing and gluten-free breads with improved nutritional value, quality and safety due to shelf-life extension, and is in-line with consumer's demands for more products containing less additives. Other alternative biopreservation techniques include the utilization of antifungal peptides, ethanol and plant extracts. These can be added to bread formulations or incorporated in antimicrobial films for active packaging (AP) of bread. This review outlines recent progress that has been made in the area of bread biopreservation and future perspectives in this important area.
Collapse
Affiliation(s)
- Claudia Axel
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Emanuele Zannini
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Elke K Arendt
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| |
Collapse
|
9
|
Heitmann M, Zannini E, Arendt E. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Crit Rev Food Sci Nutr 2017; 58:1152-1164. [DOI: 10.1080/10408398.2016.1244153] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Accessing spoilage features of osmotolerant yeasts identified from kiwifruit plantation and processing environment in Shaanxi, China. Int J Food Microbiol 2016; 232:126-33. [DOI: 10.1016/j.ijfoodmicro.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
|
11
|
Rinaldi M, Paciulli M, Caligiani A, Sgarbi E, Cirlini M, Dall’Asta C, Chiavaro E. Durum and soft wheat flours in sourdough and straight-dough bread-making. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6254-65. [PMID: 26396371 PMCID: PMC4573124 DOI: 10.1007/s13197-015-1787-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
In the present work, the bread-making performance of durum wheat flour under straight-dough and sourdough procedures were compared to those offered by soft wheat flour by means of selected physical properties (colour, texture, water dynamics, crumb grain characteristic, bulk volume) immediately after baking and during a 5-day shelf-life. The use of sourdough process better preserved both crumb grain characteristic and moisture content of the breads during shelf-life, independently of the wheat flour used. The flour seemed to significantly affect the water dynamics in sourdough breads, being the dehydration process of crust and under-crust faster in durum wheat breads. On the other hand, increasing trend of crumb firmness during the shelf-life was slower in durum wheat breads than in those obtained with soft wheat flour. Initial colour parameters of crust and crumb appeared to less change during shelf-life if durum wheat flour was used. Thus, the final quality of breads after baking and along the shelf-life was significantly affected by both the type of flours and the bread-making process. The results reported herein showed that technological performances of durum wheat flour, especially when combined with sourdough processes, could be successfully exploited for the production of innovative products in the bread-making industry.
Collapse
Affiliation(s)
- Massimiliano Rinaldi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Maria Paciulli
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Augusta Caligiani
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Elisa Sgarbi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Martina Cirlini
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Chiara Dall’Asta
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| | - Emma Chiavaro
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 47/A, 43124 Parma, Italy
| |
Collapse
|