1
|
Falih MA, Altemimi AB, Hamed Alkaisy Q, Awlqadr FH, Abedelmaksoud TG, Amjadi S, Hesarinejad MA. Enhancing safety and quality in the global cheese industry: A review of innovative preservation techniques. Heliyon 2024; 10:e40459. [PMID: 39654744 PMCID: PMC11625285 DOI: 10.1016/j.heliyon.2024.e40459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The global cheese industry faces challenges in adopting new preservation methods due to microbiological decay and health risks associated with chemical preservatives. Ensuring the safety and quality control of hard and semi-hard cheeses is crucial given their prolonged maturation and storage. Researchers are urged to create cheese products emphasizing safety, minimal processing, eco-labels, and clean labels to address consumer health and environmental worries. This review aims to explore effective strategies for ensuring the safety and quality of ripened cheeses, covering traditional techniques like aging, maturation, and salting, along with innovative methods such as modified and vacuum packaging, high-pressure processing, and active and intelligent packaging. Additionally, sustainable cheese preservation approaches, their impact on shelf life extension, and the physiochemical and quality attributes post-preservation are all analyzed. Overall, the cheese industry stands to benefit from this evaluation through enhanced market value, increased consumer satisfaction, and better environmental sustainability.The integration of novel preservation techniques in the cheese industry not only addresses current challenges but also paves the way for a more sustainable and consumer-oriented approach. By continually refining and implementing safety measures, quality control processes, and environmentally friendly practices, cheese producers can meet evolving consumer demands while ensuring the longevity and integrity of their products. Through a concerted effort to embrace innovation and adapt to changing market dynamics, the global cheese industry is poised to thrive in a competitive landscape where safety, quality, and sustainability are paramount.
Collapse
Affiliation(s)
- Mohammed A. Falih
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Qausar Hamed Alkaisy
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Farhang H. Awlqadr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran
| | | | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Mohamad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
2
|
Liu W, Wang T, Su E. Insights into the antifungal activity and mechanisms of cinnamon components against Aspergillus flavus and Penicillium citrinum. Food Res Int 2024; 197:115291. [PMID: 39577939 DOI: 10.1016/j.foodres.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Fungal spoilage of food and the excessive use of chemical disinfectants serves potential adverse effects on human health and the environment. Consequently, there is a growing interest in exploring natural alternatives, particularly plant-derived antimicrobial preservatives. Cinnamon extracts are known for their antifungal activity, but most research has focused on essential oils, rarely on other bioactive components. This study assessed the antifungal activity and underlying mechanisms of four components-trans-cinnamaldehyde, cis-2-methoxycinnamic acid, coumarin, and o-methoxycinnamaldehyde-extracted from Cinnamomum cassia Presl (cinnamon) against Aspergillus flavus and Penicillium citrinum. These cinnamon components can inhibit the two fungi strains at the minimum inhibitory concentration ranged from 0.30 to 8.55 mmol/L. These components can disrupt fungal cell membranes by enhancing relative electrical conductivity and cytoplasmic content leakage, reducing ergosterol content, and increasing malondialdehyde level. Additionally, they can affect fungal cell wall integrity, leading to the leakage of alkaline phosphatase and alterations in the contents of β-1,3-glucan and chitin. Moreover, the cinnamon components influenced the activities of malate dehydrogenase, succinate dehydrogenase, as well as adenosine triphosphate levels. The observed suppression of fungal contamination in A. flavus and P. citrinum suggests that these cinnamon components as potential natural antifungal agents.
Collapse
Affiliation(s)
- Wanning Liu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Hassan S, Bilal N, Khan TJ, Ali MN, Ghafoor B, Saif KU. Bioinspired chitosan based functionalization of biomedical implant surfaces for enhanced hemocompatibility, antioxidation and anticoagulation potential: an in silico and in vitro study. RSC Adv 2024; 14:20691-20713. [PMID: 38952927 PMCID: PMC11215499 DOI: 10.1039/d4ra00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Endowing implanted biomaterials with better hemocompatibility, anticoagulation, antioxidant and antiplatelet adhesion is necessary because of their potential to trigger activation of multiple reactive mechanisms including coagulation cascade and potentially causing serious adverse clinical events like late thrombosis. Active ingredients from natural sources including Foeniculum vulgare, Angelica sinensis, and Cinnamomum verum have the ability to inhibit the coagulation cascade and thrombus formation around biomedical implants. These properties are of interest for the development of a novel drug for biomedical implants to potentially solve the current blood clotting and coagulation problems which lead to stent thrombosis. The objective of this study was to incorporate different anticoagulants from natural sources into a degradable matrix of chitosan with varying concentrations ranging from 5% to 15% and a composite containing all three drugs. The presence of anticoagulant constituents was identified using GC-MS. Subsequently, all the compositions were characterized principally by using Fourier transform infrared spectroscopy and scanning electron microscopy while the drug release profile was determined using UV-spectrometry for a 30 days immersion period. The results indicated an initial burst release which was subsequently followed by the sustained release pattern. Compared to heparin loaded chitosan, DPPH and hemolysis tests revealed better blood compatibility of natural drug loaded films. Moreover, the anticoagulation activity of natural drugs was equivalent to the heparin loaded film; however, through docking, the mechanism of inhibition of the coagulation cascade of the novel drug was found to be through blocking the extrinsic pathway. The study suggested that the proposed drug composite expresses an optimum composition which may be a practicable and appropriate candidate for biomedical implant coatings.
Collapse
Affiliation(s)
- Sadia Hassan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Namra Bilal
- Nencki Institute of Experimental Biology Poland
| | - Tooba Javaid Khan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Murtaza Najabat Ali
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Bakhtawar Ghafoor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | | |
Collapse
|
4
|
Abd El-Aziz M, Salama HH, Sayed RS. Plant extracts and essential oils in the dairy industry: A review. FOODS AND RAW MATERIALS 2023:321-337. [DOI: 10.21603/2308-4057-2023-2-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Plants have been used as food additives worldwide to enhance the sensory qualities of foods and extend their shelf life by reducing or eliminating foodborne pathogens. They also serve as therapeutic agents due to their beneficial effects on human health through their anti-cancerous, anti-inflammatory, antioxidant, and immune-modulatory properties.
Plants can be added to food as a dry powder, grated material, paste, juice, or as an extract that can be produced by a variety of methods. Plant extracts and essential oils are concentrated sources of bioactive phytochemicals that can be added to food in small amounts in a variety of forms. These forms include liquid, semi-solid, or dry powder for easy and uniform diffusion. Encapsulation can protect bioactive compounds from temperature, moisture, oxidation, and light, as well as allow for controlling the release of the encapsulated ingredients. Nanoemulsions can enhance the bioactivity of active components.
This review explains how plant extracts and essential oils are used in the dairy industry as antimicrobial materials, analyzing their impact on starter bacteria; as natural antioxidants to prevent the development of off-flavors and increase shelf life; and as technological auxiliaries, like milk-clotting enzymes, stabilizers, and flavoring agents. Therefore, plant extracts and essential oils are a better choice for the dairy industry than plants or their parts due to a wide range of applications, homogeneous dispersion, and ability to control the concentration of the bioactive ingredients and enhance their efficiency.
Collapse
|
5
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
6
|
Shojaee A, Anvar SA, Hamedi H, Sohrabi Haghdoost N, Bahmani S. Antifungal and antioxidant activity of two essential oils and
Lactococcus lactis
subsp.
lactis
extract on selected Iranian white cheese‐contaminating fungi. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology Department of Basic Sciences Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad Iran
| | - Seyed AmirAli Anvar
- Department of Food Hygiene, Science and Research Branch Islamic Azad UniversityTehran Iran
| | - Hassan Hamedi
- Department of Food Safety and Hygiene, Science and Research Branch Islamic Azad UniversityTehran Iran
| | | | - Shilan Bahmani
- Department of Food Safety and Hygiene, Science and Research Branch Islamic Azad UniversityTehran Iran
| |
Collapse
|
7
|
Nájera AI, Nieto S, Barron LJR, Albisu M. A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189789. [PMID: 34574712 PMCID: PMC8469587 DOI: 10.3390/ijerph18189789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Cheese is a dairy product with potential health benefits. Cheese consumption has increased due to the significant diversity of varieties, versatility of product presentation, and changes in consumers’ lifestyles. Spoilage of hard and semi-hard cheeses can be promoted by their maturation period and/or by their long shelf-life. Therefore, preservation studies play a fundamental role in maintaining and/or increasing their shelf-life, and are of significant importance for the dairy sector. The aim of this review is to discuss the most effective methods to ensure the safety and sensory quality of ripened cheeses. We review traditional methods, such as freezing, and modern and innovative technologies, such as high hydrostatic pressures, chemical and natural vegetable origin preservatives, vacuum and modified atmosphere packaging, edible coatings and films, and other technologies applied at the end of storage and marketing stages, including light pulses and irradiation. For each technology, the main advantages and limitations for industrial application in the dairy sector are discussed. Each type of cheese requires a specific preservation treatment and optimal application conditions to ensure cheese quality and safety during storage. The environmental impact of the preservation technologies and their contribution to the sustainability of the food chain are discussed.
Collapse
Affiliation(s)
- Ana Isabel Nájera
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| | - Sonia Nieto
- Efficient and Sustainable Processes Department, Bizkaia Technology Park, AZTI, P.O. Box 609, 48160 Derio, Spain;
| | - Luis Javier R. Barron
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
| | - Marta Albisu
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| |
Collapse
|
8
|
Lai T, Sun Y, Liu Y, Li R, Chen Y, Zhou T. Cinnamon Oil Inhibits Penicillium expansum Growth by Disturbing the Carbohydrate Metabolic Process. J Fungi (Basel) 2021; 7:jof7020123. [PMID: 33572180 PMCID: PMC7915993 DOI: 10.3390/jof7020123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
Penicillium expansum is a major postharvest pathogen that mainly threatens the global pome fruit industry and causes great economic losses annually. In the present study, the antifungal effects and potential mechanism of cinnamon oil against P. expansum were investigated. Results indicated that 0.25 mg L−1 cinnamon oil could efficiently inhibit the spore germination, conidial production, mycelial accumulation, and expansion of P. expansum. In addition, it could effectively control blue mold rots induced by P. expansum in apples. Cinnamon oil could also reduce the expression of genes involved in patulin biosynthesis. Through a proteomic quantitative analysis, a total of 146 differentially expressed proteins (DEPs) involved in the carbohydrate metabolic process, most of which were down-regulated, were noticed for their large number and functional significance. Meanwhile, the expressions of 14 candidate genes corresponding to DEPs and the activities of six key regulatory enzymes (involving in cellulose hydrolyzation, Krebs circle, glycolysis, and pentose phosphate pathway) showed a similar trend in protein levels. In addition, extracellular carbohydrate consumption, intracellular carbohydrate accumulation, and ATP production of P. expansum under cinnamon oil stress were significantly decreased. Basing on the correlated and mutually authenticated results, we speculated that disturbing the fungal carbohydrate metabolic process would be partly responsible for the inhibitory effects of cinnamon oil on P. expansum growth. The findings would provide new insights into the antimicrobial mode of cinnamon oil.
Collapse
Affiliation(s)
- Tongfei Lai
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (R.L.); (Y.C.)
| | - Yangying Sun
- Hangzhou Key Laboratory for Safety of Agricultural Products, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (Y.S.); (Y.L.)
| | - Yaoyao Liu
- Hangzhou Key Laboratory for Safety of Agricultural Products, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (Y.S.); (Y.L.)
| | - Ran Li
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (R.L.); (Y.C.)
| | - Yuanzhi Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (R.L.); (Y.C.)
| | - Ting Zhou
- Research Centre for Plant RNA Signaling, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (R.L.); (Y.C.)
- Hangzhou Key Laboratory for Safety of Agricultural Products, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (Y.S.); (Y.L.)
- Correspondence: or ; Tel.: +86-571-28861007; Fax: +86-571-28866065
| |
Collapse
|
9
|
Mileriene J, Serniene L, Henriques M, Gomes D, Pereira C, Kondrotiene K, Kasetiene N, Lauciene L, Sekmokiene D, Malakauskas M. Effect of liquid whey protein concentrate-based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J Dairy Sci 2020; 104:1504-1517. [PMID: 33309377 DOI: 10.3168/jds.2020-18732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
Abstract
Fresh unripened curd cheese has long been a well-known Eastern European artisanal dairy product; however, due to possible cross-contamination from manual production steps, high moisture content (50-60%), and metabolic activity of present lactic acid bacteria, the shelf life of curd cheese is short (10-20 d). Therefore, the aim of this study was to improve the shelf life of Eastern European acid-curd cheese by applying an antimicrobial protein-based (5%, wt/wt) edible coating. The bioactive edible coating was produced from liquid whey protein concentrate (a cheese production byproduct) and fortified with 0.3% (wt/wt, solution basis) Chinese cinnamon bark (Cinnamomum cassia) CO2 extract. The effect of coating on the cheese was evaluated within package-free (group 1) and additionally vacuum packaged (group 2) conditions to represent types of cheeses sold by small and big scale manufacturers. The cheese samples were examined over 31 d of storage for changes of microbiological (total bacterial count, lactic acid bacteria, yeasts and molds, coliforms, enterobacteria, Staphylococcus spp.), physicochemical (pH, lactic acid, protein, fat, moisture, color change, rheological, and sensory properties). The controlled experiment revealed that in group 1, applied coating affected appearance and color by preserving moisture and decreasing growth of yeasts and molds during prolonged package-free cheese storage. In group 2, coating did not affect moisture, color, or texture, but had a strong antimicrobial effect, decreasing the counts of yeasts and molds by 0.79 to 1.55 log cfu/g during 31 d of storage. In both groups, coating had no effect on pH, lactic acid, protein, and fat contents. Evaluated sensory properties (appearance, odor, taste, texture, and overall acceptability) of all samples were similar, indicating no effect of the coating on the flavor of curd cheese. The edible coating based on liquid whey protein concentrate with the incorporation of cinnamon extract was demonstrated to efficiently extend the shelf life of perishable fresh curd cheese, enhance its functional value, and contribute to a more sustainable production process.
Collapse
Affiliation(s)
- Justina Mileriene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania.
| | - Loreta Serniene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Marta Henriques
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal; Research Center for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - David Gomes
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Carlos Pereira
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal; Research Center for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Kristina Kondrotiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Neringa Kasetiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Lina Lauciene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Dalia Sekmokiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
10
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
11
|
Ritota M, Manzi P. Natural Preservatives from Plant in Cheese Making. Animals (Basel) 2020; 10:E749. [PMID: 32344784 PMCID: PMC7223362 DOI: 10.3390/ani10040749] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/02/2023] Open
Abstract
Today, consumers are increasingly demanding safety alternatives concerning the use of synthetic additives in the food industry, as well as healthy food. As a result, a major number of plant-derived preservatives have been tested in the food industry. These natural ingredients have antioxidant properties and have shown to increase the bioactive molecules levels and the microbiological stability of the food items. The effect of the plant-based preservatives on the sensorial properties of the new products has also to be considered, because natural preservatives could result in sensorial characteristics that may not be accepted by the consumers. Cheese is a dairy product widely appreciated all over the world, but it is also susceptible to contamination by pathogenic and spoilage microorganisms; therefore, the use of preservatives in cheese making represents an important step. This review deals with one of the innovation in the cheese sector, which is the addition of natural preservatives. Several aspects are discussed, such as the effect of natural ingredients on the microbial stability of cheese, and their influence on the chemical, nutritional and sensorial characteristics of the cheeses. Although the promising results, further studies are needed to confirm the use of natural preservatives from plants in cheese making.
Collapse
Affiliation(s)
- Mena Ritota
- CREA—Centro di Ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Rome, Italy;
| | | |
Collapse
|
12
|
Gabriel KT, Kartforosh L, Crow SA, Cornelison CT. Antimicrobial Activity of Essential Oils Against the Fungal Pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia 2018; 183:921-934. [PMID: 30306397 DOI: 10.1007/s11046-018-0298-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 01/14/2023]
Abstract
Fungal pathogens are a growing worldwide concern. Declines in a number of economically and agriculturally important plant and animal species pose a significant threat to both biodiversity and food security. Although many effective antifungal agents have been identified, their toxicity often precludes their use with food products or sensitive animal species. This has prompted the exploration of natural products as effective treatment compounds. In the present study, several essential oils were tested for their capacity to limit the growth of the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans, the causative agents of chalkbrood disease among honey bee larvae and white-nose syndrome among bats, respectively. Essential oils of cinnamon bark, citronella, lemongrass, and orange were exposed to A. apis in contact-dependent oil-agar suspensions as well as in contact-independent shared airspaces. Essential oils of cinnamon bark, citronella, and lemongrass were exposed to P. destructans in contact-dependent oil-agar suspensions. All compounds were found to significantly inhibit mycelial growth at low concentrations, suggesting the potential for these natural products to be used for controlling these and other select fungal pathogens.
Collapse
Affiliation(s)
- Kyle T Gabriel
- Division of Research and Advanced Study, Kennesaw State University, Kennesaw, GA, USA.
| | - Leila Kartforosh
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Sidney A Crow
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Khorshidian N, Yousefi M, Khanniri E, Mortazavian AM. Potential application of essential oils as antimicrobial preservatives in cheese. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Abstract
The basic raw materials for the production of processed cheese are natural cheese which is treated by heat with the addition of emulsifying salts. From a point of view of the melting temperatures used (and the pH-value of the product), the course of processed cheese production can be considered "pasteurisation of cheese." During the melting process, the majority of vegetative forms of microorganisms, including bacteria of the family Enterobacteriaceae, are inactivated. The melting temperatures are not sufficient to kill the endospores, which survive the process but are often weakened. From a microbiological point of view, the biggest contamination problem of processed cheese is caused by gram-positive spore-forming rod-shaped bacteria of the genera Bacillus, Geobacillus, and Clostridium. Other factors affecting the shelf-life and quality of processed cheese are mainly the microbiological quality of the raw materials used, strict hygienic conditions during the manufacturing process as well as the type of packaging materials and storage conditions. The quality of processed cheese is not only dependent on the ingredients used but also on other parameters such as the value of water activity of the processed cheese, its pH-value, the presence of salts and emulsifying salts and the amount of fat in the product.
Collapse
Affiliation(s)
- Leona Buňková
- a Department of Environmental Protection Engineering , Faculty of Technology, Tomas Bata University in Zlín , Zlín , Czech Republic
| | - František Buňka
- b Department of Food Technology , Faculty of Technology, Tomas Bata University in Zlín , Zlín , Czech Republic
| |
Collapse
|
15
|
In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|