1
|
Chen Y, Zhang T, Zhang T, Zhang X, Liang Z, Xia P. Root polysaccharides of Panax notoginseng alleviated melasma by regulating the Nrf2/ARE signaling pathway. Int J Biol Macromol 2025; 305:141256. [PMID: 39978490 DOI: 10.1016/j.ijbiomac.2025.141256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Panax notoginseng has gained attention for its potential efficacy and mechanisms in skin whitening and spot removal. In this study, we investigated the effects of pre-columnar saponins and polysaccharides from the roots, as well as pre-columnar saponins and flavonoids from the stems and leaves, in the prevention and treatment of melasma. We further explored their molecular mechanisms, focusing on the Nrf2/ARE signaling pathway. Inhibition of tyrosinase (TYR) activity and antioxidant activity assays showed that all four active compounds could effectively inhibit TYR activity and enhance antioxidant capacity in vitro and in vivo. In addition, the mechanism of action, RT-qPCR, Western blot and immunofluorescence assays showed that they were involved in the Nrf2/ARE pathway, up-regulating the expression of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) mRNAs, while down-regulating Kelch-like ECH-associated protein 1 (Keap1). Overall, these four compounds from P. notoginseng exhibited significant TYR inhibitory and antioxidant effects, ameliorating melasma in mice via the Nrf2/ARE pathway. These findings suggest that they may serve as promising therapeutic candidates for melasma treatment.
Collapse
Affiliation(s)
- Yeer Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tingting Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tie Zhang
- Wenshan University, Inst Sanqi Res, Wenshan 663000, China
| | - Xuemin Zhang
- Tianjin Tasly modern TCM Resources Co., Ltd., Tianjin 300410, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Wei K, Guo C, Zhu J, Wei Y, Wu M, Huang X, Zhang M, Li J, Wang X, Wang Y, Wei X. The Whitening, Moisturizing, Anti-aging Activities, and Skincare Evaluation of Selenium-Enriched Mung Bean Fermentation Broth. Front Nutr 2022; 9:837168. [PMID: 35369078 PMCID: PMC8973414 DOI: 10.3389/fnut.2022.837168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
Selenium-enriched mung bean (Se-MB) is a combination of mung bean (MB) and selenium (Se), which have a variety of potential biological activities. However, little is known about the skincare activity of Se-MB. The chemical composition of Se-MB fermentation broth (Se-MBFB) was analyzed to investigate the whitening, moisturizing, and anti-aging activities of Se-MBFB. The tyrosinase inhibition, anti-melanogenic in melanocytes (B16F10 cells), and moisturizing effect in human dermal fibroblasts (HDFs) were analyzed. Besides, the free radical scavenging activity of Se-MBFB was assessed in vitro. To verify the in vivo effects and the potential of practical applications of Se-MBFB, a clinical trial was conducted on the participants: 31 Chinese women aged 25–60 years, with no pigmentation disorder, no illness, no history of hypersensitivity reaction, and no use of skincare product on the face. The participants used an Se-MBFB masque for 15-20 min after cleaning the face. The measurement points were Week 0, 2, and 4 (W0, W2, and W4) after using the masque, and target sites were cheek and canthus. The following parameters were recorded on the target sites at each visit: melanin index, skin color, cuticle moisture content, transepidermal water loss, and crow's feet. The results demonstrated that Se-MBFB was rich in polyphenols, peptides, and γ-aminobutyric acid (GABA), displayed significant free radical scavenging and tyrosinase inhibiting activities, decreased the synthesis of melanin, and upregulated the aquaporin-3 (AQP3) expression. The test of the Se-MBFB mask showed that after 4 weeks of using the Se-MBFB facemask, the faces of the participants became whiter with reduced wrinkles and increased moisture content. Se-MB possessed the excellent whitening, moisturizing, and antioxidant efficacy, which could lay a scientific foundation for utilization and development of skincare products of Se-MB and its related industrial cosmetics products.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Congyin Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiangxiong Zhu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Meirong Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | | | - Mu Zhang
- Shanghai Yuemu Cosmetics Co., Ltd., Shanghai, China
| | - Jide Li
- Shanghai Yuemu Cosmetics Co., Ltd., Shanghai, China
| | - Xueyun Wang
- Enshi Selenium Impression Agricultural Technology Co., Ltd., Shadi Township, Enshi, China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Yuanfeng Wang
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinlin Wei
| |
Collapse
|
3
|
Yoo HY, Lee KC, Woo JE, Park SH, Lee S, Joo J, Bae JS, Kwon HJ, Park BJ. A Genome-Wide Association Study and Machine-Learning Algorithm Analysis on the Prediction of Facial Phenotypes by Genotypes in Korean Women. Clin Cosmet Investig Dermatol 2022; 15:433-445. [PMID: 35313536 PMCID: PMC8933694 DOI: 10.2147/ccid.s339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022]
Abstract
Purpose Changes in facial appearance are affected by various intrinsic and extrinsic factors, which vary from person to person. Therefore, each person needs to determine their skin condition accurately to care for their skin accordingly. Recently, genetic identification by skin-related phenotypes has become possible using genome-wide association studies (GWAS) and machine-learning algorithms. However, because most GWAS have focused on populations with American or European skin pigmentation, large-scale GWAS are needed for Asian populations. This study aimed to evaluate the correlation of facial phenotypes with candidate single-nucleotide polymorphisms (SNPs) to predict phenotype from genotype using machine learning. Materials and Methods A total of 749 Korean women aged 30-50 years were enrolled in this study and evaluated for five facial phenotypes (melanin, gloss, hydration, wrinkle, and elasticity). To find highly related SNPs with each phenotype, GWAS analysis was used. In addition, phenotype prediction was performed using three machine-learning algorithms (linear, ridge, and linear support vector regressions) using five-fold cross-validation. Results Using GWAS analysis, we found 46 novel highly associated SNPs (p < 1×10-05): 3, 20, 12, 6, and 5 SNPs for melanin, gloss, hydration, wrinkle, and elasticity, respectively. On comparing the performance of each model based on phenotypes using five-fold cross-validation, the ridge regression model showed the highest accuracy (r2 = 0.6422-0.7266) in all skin traits. Therefore, the optimal solution for personal skin diagnosis using GWAS was with the ridge regression model. Conclusion The proposed facial phenotype prediction model in this study provided the optimal solution for accurately predicting the skin condition of an individual by identifying genotype information of target characteristics and machine-learning methods. This model has potential utility for the development of customized cosmetics.
Collapse
Affiliation(s)
- Hye-Young Yoo
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Ki-Chan Lee
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Ji-Eun Woo
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Sung-Ha Park
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| | - Sunghoon Lee
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Joungsu Joo
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Jin-Sik Bae
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Hyuk-Jung Kwon
- R&D Department, Eone Diagnomics Genome Center Co., Ltd, Songdo Incheon, 22014, Republic of Korea
| | - Byoung-Jun Park
- Skin & Natural Products Lab, Kolmar Korea Co., Ltd., Seoul, 06800, Republic of Korea
| |
Collapse
|
4
|
A review on metabolites and pharmaceutical potential of food legume crop mung bean ( Vigna radiata L. Wilczek). BIOTECHNOLOGIA 2021; 102:425-435. [PMID: 36605597 PMCID: PMC9642937 DOI: 10.5114/bta.2021.111107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
Mung bean or moong or green gram, an important grain legume, is cultivated mainly in Asian countries and other parts of the world as a food crop. It is a highly nutritious grain legume with a high content of easily digestible proteins (20-32%), carbohydrates (53.3-67.1%), lipids (0.71-1.85%), vitamins, minerals, and fiber. It also contains some antinutrients such as tannins, phytic acid, hemagglutinin, polyphenols, and trypsin inhibitors in low concentrations. The sprouting of seeds leads to dynamic changes in metabolites with a decrease in antinutrient content and an increase in the nutritional value. In addition to these nutrients and antinutrients, the plant also contains various other phytochemicals such as alkaloids, flavonoids, saponins, phenols, glycosides, and bioactive peptides, which exhibit an array of pharmaceutically important properties such as anti-inflammatory, antinociceptive, antimicrobial, antioxidant, antidiabetic, lipid metabolism regulation, antihypertensive, antiallergic, and antitumor. Being rich in nutritional value and other phytochemical components, the plant can be explored further for its pharmaceutical properties and used as an efficient food additive in the preparation of different types of dietary supplements or food-derived drugs.
Collapse
|
5
|
Kumari S, Phogat D, Sehrawat KD, Choudhary R, Rajput VD, Ahlawat J, Karunakaran R, Minkina T, Sehrawat AR. The Effect of Ascophyllum nodosum Extract on the Nutraceutical Antioxidant Potential of Vigna radiata Sprout under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:1216. [PMID: 34203887 PMCID: PMC8232706 DOI: 10.3390/plants10061216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | | | - Krishnan D. Sehrawat
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Jyoti Ahlawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| |
Collapse
|
6
|
Mekkara Nikarthil Sudhakaran S, Bukkan DS. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 2021; 45:e13743. [PMID: 33934386 DOI: 10.1111/jfbc.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.
Collapse
|
7
|
Effect of Chrysanthemum indicum Linné extract on melanogenesis through regulation of TGF-β/JNK signaling pathway. Food Sci Biotechnol 2019; 28:1577-1582. [PMID: 31695958 DOI: 10.1007/s10068-019-00668-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022] Open
Abstract
Although several physiological effects of Chrysanthemum indicum Linné (CL) have been researched, the specific effect and molecular mechanism of CL as a functional food material for skin health remain still unknown. Here, it was observed that the α-MSH and IBMX-initiated B16F10 melanogenesis was suppressed by the CL water extract (CLE) treatment. The CLE treatment also increased the mRNA expression levels of pro-collagen1α2, collagen1α2, and fibronectin via exerting the TGF-β/JNK signaling pathway. Together, the beneficial role of CLE in skin health was demonstrated through the downregulation of melanogenesis and enhancement of skin fibril-related genes. It was also revealed that the function of CLE is mediated with the activation of the TGF-β/JNK signaling pathway. These results may provide evidences for the development of functional foods using CLE for maintaining healthy skin.
Collapse
|
8
|
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean ( Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019; 11:E1238. [PMID: 31159173 PMCID: PMC6627095 DOI: 10.3390/nu11061238] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Mung bean (Vigna radiata L.) is an important pulse consumed all over the world, especially in Asian countries, and has a long history of usage as traditional medicine. It has been known to be an excellent source of protein, dietary fiber, minerals, vitamins, and significant amounts of bioactive compounds, including polyphenols, polysaccharides, and peptides, therefore, becoming a popular functional food in promoting good health. The mung bean has been documented to ameliorate hyperglycemia, hyperlipemia, and hypertension, and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities. These health benefits derive primarily from the concentration and properties of those active compounds present in the mung bean. Vitexin and isovitexin are identified as the major polyphenols, and peptides containing hydrophobic amino acid residues with small molecular weight show higher bioactivity in the mung bean. Considering the recent surge in interest in the use of grain legumes, we hope this review will provide a blueprint to better utilize the mung bean in food products to improve human nutrition and further encourage advancement in this field.
Collapse
Affiliation(s)
- Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jihong Wu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China.
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
A critical review on phytochemical profile and health promoting effects of mung bean ( Vigna radiata ). FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|