1
|
Yoon JH, Song H, Lee SY. Biofilm formation, slime production, and antibiotic susceptibility properties of the Bacillus cereus group isolated from fresh vegetables in the Republic of Korea. Food Sci Biotechnol 2025; 34:1525-1531. [PMID: 40110395 PMCID: PMC11914702 DOI: 10.1007/s10068-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 03/22/2025] Open
Abstract
This study aimed to characterize the ability of the Bacillus cereus group isolated from conventionally, organically or pesticide-freely grown vegetables to form biofilms with regard to cell surface hydrophobicity (CSH), slime production, and antibiotic susceptibility. Cellular properties (biofilm formation, CSH, and slime production) were measured using an in vitro microplate assay with crystal violet staining, adhesion to hydrocarbons assay, and Congo red broth method, respectively. Consequently, 16, 16, and 16 B. cereus strains were isolated from conventionally, organically, and pesticide-freely grown vegetables, respectively, and 16 (33%) B. cereus isolates were highly biofilm-positive producers. CSH values dramatically varied, ranging from 19 to 74%, among the B. cereus isolates. Additionally, 9, 8, and 8 B. cereus strains isolated from conventionally, organically, and pesticide-freely grown vegetables, respectively, were identified to be slime-positive producers. According to the disc diffusion method, 19 and 41 B. cereus isolates were highly resistant to ampicillin and penicillin, respectively.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-Ro, Suncheon-Si, Jeollanam-Do 57922 Republic of Korea
| | - Hana Song
- Department of Food and Nutrition, Chung-Ang University, Seodong-Daero, Anseong-Si, Gyeonggi-Do 4726 Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-Daero, Anseong-Si, Gyeonggi-Do 4726 Republic of Korea
| |
Collapse
|
2
|
Terzić J, Stanković M, Stefanović O. Extracts of Achillea millefolium L. inhibited biofilms and biofilm-related virulence factors of pathogenic bacteria isolated from wounds. Microb Pathog 2025; 199:107219. [PMID: 39667637 DOI: 10.1016/j.micpath.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Biofilm is a surface-attached community of bacterial cells implicated in the pathogenesis of chronic infections and is highly resistant to antibiotics. New alternatives for controlling bacterial infections have been proposed focusing on the therapeutic properties of medicinal plants. Achillea millefollium (Yarrow) is a widespread plant species that is widely used in traditional medicine, especially for wound healing. Therefore, the purpose of this study was to examine the antibiofilm activity of A. millefolium ethanol, acetone, and ethyl acetate extracts on biofilms of Staphylococcus aureus, Proteus spp. and Pseudomonas aeruginosa strains originating from human wounds. Additionally, the effects of the tested extracts on auto-aggregation, cell surface hydrophobicity, and bacterial motility were evaluated. Phytochemical analysis included FT-IR spectroscopy and spectrophotometric quantification of phenolic compound contents was performed. In a test with crystal violet, the extracts strongly inhibited initial cell attachment and biofilm formation, but the effects on mature biofilms were weaker. The effects were dose- and strain-dependent, which was confirmed by fluorescence microscopy. The acetone extract showed the strongest antibiofilm activity. Biofilms of S. aureus S3 and S2 clinical strains were the most susceptible (inhibition of ≥76 % and ≥72 % at all tested concentrations, respectively). The highest concentration of total flavonoids was measured in the acetone extract (100.01 ± 3.13 mg RUE/g). Additionally, the extracts reduced bacterial auto-aggregation, swimming and swarming motility of some strains but did not disturb bacterial cell hydrophobicity. These results suggest that A. millefolium extracts have potential roles as new antibiofilm agents against human pathogenic bacteria.
Collapse
Affiliation(s)
- Jelena Terzić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Marina Stanković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Olgica Stefanović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| |
Collapse
|
3
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
4
|
Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Kim YJ, Yu HH, Park YJ, Lee, NK, Paik HD. Anti-Biofilm Activity of Cell-Free Supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. J Microbiol Biotechnol 2020; 30:1854-1861. [PMID: 32958735 PMCID: PMC9728167 DOI: 10.4014/jmb.2008.08053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is one of the most common microorganisms and causes foodborne diseases. In particular, biofilm-forming S. aureus is more resistant to antimicrobial agents and sanitizing treatments than planktonic cells. Therefore, this study aimed to investigate the anti-biofilm effects of cell-free supernatant (CFS) of Saccharomyces cerevisiae isolated from cucumber jangajji compared to grapefruit seed extract (GSE). CFS and GSE inhibited and degraded S. aureus biofilms. The adhesion ability, auto-aggregation, and exopolysaccharide production of CFS-treated S. aureus, compared to those of the control, were significantly decreased. Moreover, biofilm-related gene expression was altered upon CFS treatment. Scanning electron microscopy images confirmed that CFS exerted anti-biofilm effects against S. aureus. Therefore, these results suggest that S. cerevisiae CFS has anti-biofilm potential against S. aureus strains.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong Jin Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee,
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 Fax: +82-2-455-3082 E-mail:
| |
Collapse
|
6
|
Feldman M, Smoum R, Mechoulam R, Steinberg D. Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus. Sci Rep 2018; 8:17696. [PMID: 30523307 PMCID: PMC6283871 DOI: 10.1038/s41598-018-35793-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Infections caused by antibiotic-resistant strains of Staphylococcus aureus have reached epidemic proportions globally. Staphylococcal biofilms are associated with increased antimicrobial resistance and are generally less affected by host immune factors. Therefore, there is an urgent need for novel agents that not only aim at multidrug-resistant pathogens, but also ones that will act as anti biofilms. In the present study, we investigated the antimicrobial activity of the endocannabinoid (EC) anandamide (AEA) and the endocannabinoid-like (EC-like), arachidonoyl serine (AraS) against methicillin resistant S. aureus strains (MRSA). We observed a strong inhibition of biofilm formation of all tested MRSA strains as well as a notable reduction of metabolic activity of pre-formed MRSA biofilms by both agents. Moreover, staphylococcal biofilm-associated virulence determinants such as hydrophobicity, cell aggregation and spreading ability were altered by AEA and AraS. In addition, the agents were able to modify bacterial membrane potential. Importantly, both compounds prevent biofilm formation by altering the surface of the cell without killing the bacteria. Therefore, we propose that EC and EC-like compounds may act as a natural line of defence against MRSA or other antibiotic resistant bacteria. Due to their anti biofilm action these agents could also be a promising alternative to antibiotic therapeutics against biofilm-associated MRSA infections.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reem Smoum
- The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Klopper KB, Deane SM, Dicks LMT. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties. Probiotics Antimicrob Proteins 2018; 10:89-97. [PMID: 28756502 DOI: 10.1007/s12602-017-9307-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).
Collapse
Affiliation(s)
- Kyle B Klopper
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|