1
|
Balkrishna A, Verma S, Priya Rani M, Nain P, Varshney A. Exploring the potential of Mustard (Brassica spp.) seeds through 'Kolhu' traditional method of extraction and novel identification of an anti-cancer dipeptide, Aurantiamide acetate (Asperglaucide) on ultra-performance liquid chromatography-mass spectrometry coupled with quadrupole time-of-flight (UPLC/MS-QToF) analytical platform. Food Chem 2024; 446:138870. [PMID: 38430771 DOI: 10.1016/j.foodchem.2024.138870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Mustard (Brassica spp.) is one of the world's oldest condiments in the food basket, which holds a significant place in the global culinary landscape due to historical prominence and perceived health benefits. This study explores the extraction of oils from Mustard seeds by employing traditional 'Kolhu' method, modern supercritical fluid, and solvent extraction techniques. This study, for the first-time, identified Aurantiamide acetate, a potent anti-cancer dipeptide in Mustard seeds using ultra-performance liquid chromatography-mass spectrometry coupled with quadrupole time-of-flight (UPLC/MS-QToF) analytical platform. The analytical methodology was meticulously validated encompassing optimal parameters such as limit of detection, limit of quantification, precision, accuracy, linearity and robustness, within the range. Interestingly, 'Kolhu' method of oil extraction exhibited better yield of Aurantiamide acetate, suggesting superior efficiency of traditional methods. This study accentuates the importance of classical extraction methods, used traditionally, and emphasizes that naturally occurring substances indeed could be harnessed for better health.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation (Trust), NH-58, Haridwar 249 405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee, Haridwar Road, Haridwar 249 405, Uttarakhand, India; Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G411AU, UK
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation (Trust), NH-58, Haridwar 249 405, Uttarakhand, India
| | - M Priya Rani
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation (Trust), NH-58, Haridwar 249 405, Uttarakhand, India
| | - Pardeep Nain
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation (Trust), NH-58, Haridwar 249 405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed by Patanjali Research Foundation (Trust), NH-58, Haridwar 249 405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee, Haridwar Road, Haridwar 249 405, Uttarakhand, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
2
|
Bacterial Diversity Analysis of Chaozhou Sauerkraut Based on High-Throughput Sequencing of Different Production Methods. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In this study, high-throughput sequencing technology was used to analyze the bacterial diversity of sauerkraut produced at home and in factories in Chaozhou. The differences in bacterial community structure among different sauerkraut samples were studied by diversity analysis and heat map analysis, and the dominant bacterial genera were analyzed. The results showed that 54 phyla and 622 genera were identified from 10 Chaozhou sauerkraut samples. The bacterial community structures of Chaozhou sauerkraut produced by five factories were similar, and the dominant bacterial genera were the same, which were Lactobacillus, Pediococcus and Weissella. The dominant genus in the sauerkraut samples produced by three families was similar to that in samples produced by the factories. However, the samples from two other families were quite different, and there may be environmental pollution. The samples may also contain possible pathogenic microorganisms such as Pseudomonas and Vibrio. Overall, there were still some differences in the bacterial community structure of Chaozhou sauerkraut factory-produced and household-handmade samples. To the best of our knowledge, this paper is the first to compare the bacterial diversity of homemade and factory-produced Chaozhou sauerkraut, laying the foundation for further research on Chaozhou sauerkraut.
Collapse
|
3
|
Zhou H, Wang S, Liu W, Chang L, Zhu X, Mu G, Qian F. Probiotic properties of Lactobacillus paraplantarum LS-5 and its effect on antioxidant activity of fermented sauerkraut. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Zhang M, Choe J, Bu T, Liu S, Kim S. Comparison of Antioxidant Properties and Metabolite Profiling of Acer pseudoplatanus Leaves of Different Colors. Antioxidants (Basel) 2022; 12:antiox12010065. [PMID: 36670927 PMCID: PMC9854952 DOI: 10.3390/antiox12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Acer pseudoplatanus (maple) is a widely grown ornamental plant. In addition to its ornamental and ecological value, it also has potentially high economic value. It is a rich source of polyphenols and exhibits antioxidant activity. However, the relationship between polyphenol content and antioxidant activity in maple leaves of different colors (green, yellow, and red) has not yet been investigated. In this study, the total polyphenol (TP), total flavonoid (TFlav), tannin (TET), chlorophyll a and b (Chl a and b), total anthocyanin (TAN), and total carotene (TAC) contents in maple leaves of different colors were evaluated. Their antioxidant activities were determined based on the inhibition of lipid oxidation, DPPH scavenging, ferric ion-reducing antioxidant power, and iron-chelating abilities. The concentrations of TP, TET, TFlav, TAN, and TAC in red maple leaves were higher than those in green and yellow maple leaves. In addition, red maple leaves showed a higher antioxidant effect than the leaves of the other two colors. We observed that antioxidant activity was positively correlated with TP, TFlav, and TAN and negatively correlated with Chl a and b. Finally, we analyzed the metabolites of the different colored (i.e., green, yellow, and red) maple leaves using gas chromatography/mass spectrometry (GC/MS) and found that the metabolite profile significantly varied between the different colors. These results suggest that red leaves are a good source of polyphenols and antioxidants and have potential use in the development of functional foods and medicinal applications.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environment Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Jeehwan Choe
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Ting Bu
- Department of Environment Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Shuilin Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Sooah Kim
- Department of Environment Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
- Correspondence: ; Tel.: +82-63-220-2384; Fax: +82-63-220-2054
| |
Collapse
|
5
|
Effect of Fungal Fermentation on Enhancement of Nutritional Value and Antioxidant Activity of Defatted Oilseed Meals. Appl Biochem Biotechnol 2022; 195:2172-2195. [PMID: 35819688 DOI: 10.1007/s12010-022-04059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Agro-industrial residues contain high nutritive value. Nowadays, various advanced researches have been done for the production of various value-added products, using these wastes as substrates in the fermentation media. Flaxseed, mustard, and rice bran meal, residues of oil industry, were used as substrates for fermentation. Submerged fermentation with soil-isolated fungal species of the genus Aspergillus sp. was done for oil production by using these substrates in the fermentation media. Effect of fermentation by the oleaginous species of Aspergillus on the nutritive value and functional properties of flaxseed, mustard, and rice bran meal has been discussed for the first time in the present study. After fermentation, the seed meals showed substantial increase in the protein and ash content. The fungal strains utilized the carbohydrate present in the seed meals for the production of highly nutritional metabolites, which decrease the sugar contents of the meals. The fungi also showed extracellular amylase and cellulase activities which helped to hydrolyze the carbohydrates present in these meals, to utilize them for their metabolism. The enhancement was also observed in terms of antioxidant activity of the meals. Increase in the total phenolic and flavonoid contents was observed after fermentation along with radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid reagents and ferric reduction potential. These effects of fermentation modify these cheap waste materials into nutrient dense substrates, which could be further used in the formulation of value-added products.
Collapse
|
6
|
Li M, Bao X, Zhang X, Ren H, Cai S, Hu X, Yi J. Exploring the phytochemicals and inhibitory effects against α-glucosidase and dipeptidyl peptidase-IV in Chinese pickled chili pepper: Insights into mechanisms by molecular docking analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Flavour Generation during Lactic Acid Fermentation of Brassica Vegetables—Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermentation is a method of food preservation that has been used for centuries. Lactic acid fermentation, apart from extending the shelf-life of vegetables, affects significantly the flavour of food products. In this review, the formation of flavour, including both taste and aroma, in fermented Brassica vegetables is summarized. The flavour-active compounds are generated in various metabolic pathways from many precursors present in raw materials used for fermentation. In Brassica vegetables, a unique group of chemicals, namely glucosinolates, is present, which significantly influence the flavour of fermented products. In this summary, we took a closer look at the flavour of two of the most commonly eaten worldwide fermented Brassica products, which are sauerkraut and kimchi. Finally, the needs and directions for future studies were addressed.
Collapse
|
8
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
9
|
Thilakarathna WPDW, Yu CHJ, Rupasinghe HPV. Variations in nutritional and microbial composition of napa cabbage kimchi during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. P. D. Wass Thilakarathna
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - Cindy H. J. Yu
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| |
Collapse
|
10
|
Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol 2021; 116:415-433. [PMID: 34345117 PMCID: PMC8321624 DOI: 10.1016/j.tifs.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, 250247, Cajicá, Colombia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- HMRI and Hunter Cancer Research Alliance Centres, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erick Paul Gutiérrez-Grijalva
- Catedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110 Culiacán, Sinaloa, Mexico
| | - Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
11
|
Zakłos-Szyda M, Pietrzyk N, Kowalska-Baron A, Nowak A, Chałaśkiewicz K, Ratajewski M, Budryn G, Koziołkiewicz M. Phenolics-Rich Extracts of Dietary Plants as Regulators of Fructose Uptake in Caco-2 Cells via GLUT5 Involvement. Molecules 2021; 26:4745. [PMID: 34443333 PMCID: PMC8401051 DOI: 10.3390/molecules26164745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The latest data link the chronic consumption of large amounts of fructose present in food with the generation of hypertension and disturbances in carbohydrate and lipid metabolism, which promote the development of obesity, non-alcoholic fatty liver disease, insulin resistance, and type 2 diabetes. This effect is possible after fructose is absorbed by the small intestine cells and, to a lesser extent, by hepatocytes. Fructose transport is dependent on proteins from the family of glucose transporters (GLUTs), among which GLUT5 selectively absorbs fructose from the intestine. In this study, we examined the effect of four phenolic-rich extracts obtained from A. graveolens, B. juncea, and M. chamomilla on fructose uptake by Caco-2 cells. Extracts from B. juncea and M. chamomilla most effectively reduced fluorescent fructose analogue (NBDF) accumulation in Caco-2, as well as downregulated GLUT5 protein levels. These preparations were able to decrease the mRNA level of genes encoding transcription factors regulating GLUT5 expression-thioredoxin-interacting protein (TXNIP) and carbohydrate-responsive element-binding protein (ChREBP). Active extracts contained large amounts of apigenin and flavonols. The molecular docking simulation suggested that some of identified phenolic constituents can play an important role in the inhibition of GLUT5-mediated fructose transport.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Nina Pietrzyk
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Agnieszka Kowalska-Baron
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Katarzyna Chałaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Marcin Ratajewski
- Institute of Medical Biology, Laboratory of Epigenetics, Polish Academy of Sciences, Tylna 3a, 90-364 Łódź, Poland;
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| |
Collapse
|
12
|
Lee JH, Choi EJ, Chang JY, Song KB, Chun HH. Effect of high hydrostatic pressure (HHP) and supercooling storage in leaf mustard (Brassica juncea L.) kimchi: Modelling of microbial activity and preservation of physicochemical properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
GÖK V, ÇAĞLAR MY, TOMAR O. Comparison of chemical properties, antioxidant capacity, and phenolic acids of autoclaved and unautoclaved ground mustard seeds. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Tian Y, Deng F. Phytochemistry and biological activity of mustard (Brassica juncea): a review. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1833988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yan Tian
- College of Food Science and Technology, Hunan Agriculture University, Changsha, China
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agriculture University, Changsha, China
| |
Collapse
|
15
|
Assessing Polyphenol Components and Antioxidant Activity during Fermented Assam Tea Ball Processing. SUSTAINABILITY 2020. [DOI: 10.3390/su12145853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fermented tea is traditionally consumed in many Asian countries. In Thailand, the product is made by anaerobic submerged fermentation of semi-mature tea leaves before being made into a ball form. This study aims to investigate the composition of health-associated bioactive compounds in fermented tea balls made from Camellia sinensis var. assamica, which is naturally grown in the forests of northern Thailand. The processing involves steaming semi-mature tea leaves followed by anaerobic fermentation in 2% NaCl solution (1:5 w/v of tea leaves solution). Levels of catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG), gallocatechin (GC), flavonols (myricetin, quercetin, and kaempferol), phenolic acids (caffeic acid, chlorogenic acid, coumaric acid, and sinapic acid), total phenolic content, and in vitro antioxidant activity were evaluated in fresh tea leaves, steamed tea leaves, and fermented tea leaves over a period of 60 days’ monitoring. The results indicated that fermented tea balls still contain significant amounts of tea polyphenols, although their processing may result in some loss of most bioactive compounds. The antioxidant activity measured by Ferric Reducing Antioxidant Power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity (ORAC) assays also declined as the fermentation time was extended. However, phenolic acids, including caffeic acid and sinapic acid, contrastingly increased during prolonged fermentation by 74.35% and 171.43% from fresh leaves, respectively.
Collapse
|
16
|
Nicácio AE, Rodrigues CA, Jardim ICSF, Visentainer JV, Maldaner L. Modified QuEChERS method for phenolic compounds determination in mustard greens (Brassica juncea) using UHPLC-MS/MS. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Enhancement of the Anti-Inflammatory Effect of Mustard Kimchi on RAW 264.7 Macrophages by the Lactobacillus plantarum Fermentation-Mediated Generation of Phenolic Compound Derivatives. Foods 2020; 9:foods9020181. [PMID: 32059406 PMCID: PMC7074436 DOI: 10.3390/foods9020181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Mustard leaf kimchi contains numerous functional compounds that have various health benefits. However, the underlying mechanisms of their anti-inflammatory effects are unclear. In this study, changes in the mustard leaf kimchi phenolics profile after fermentation with or without Lactobacillus plantarum were determined using liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). To correlate changes in phenolic profiles with anti-inflammatory activities of the fermentation extracts, lipopolysaccharides (LPS)-stimulated RAW 264.7 cells were treated with the extracts. We identified 12 phenolic acids in mustard leaf kimchi fermented with L. plantarum. Caffeic acid, chlorogenic acid, epicatechin, and catechin substituted the metabolite abundance. Extracts of mustard leaf kimchi fermented by L. plantarum (MLKL) markedly inhibited nitric oxide production by decreasing interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) expression levels in LPS-treated RAW 264.7 cells. Thus, fermentation with L. plantarum potentially improves the anti-inflammatory activities of mustard leaf and mustard leaf fermented with this microorganism may serve as a proper diet for the treatment of inflammation.
Collapse
|
18
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103549] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Improved in vitro antioxidant properties and hepatoprotective effects of a fermented Inula britannica extract on ethanol-damaged HepG2 cells. Mol Biol Rep 2019; 46:6053-6063. [DOI: 10.1007/s11033-019-05040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023]
|
20
|
Antioxidant capacities and polyphenols in autumn-growing cultivar of Chinese cabbage (Brassica rapa L. ssp. pekinensis cv. Bulam Plus). Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03294-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Ryu EH, Yang JS, Lee MJ, Kim SH, Seo HY, Jung JH. Antioxidant effects of kimchi supplemented with black raspberry during fermentation protect against liver cirrhosis-induced oxidative stress in rats. Nutr Res Pract 2019; 13:87-94. [PMID: 30984352 PMCID: PMC6449543 DOI: 10.4162/nrp.2019.13.2.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 01/08/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress is a major effector of various diseases; accordingly, antioxidants are frequently ingested in order to prevent or alleviate disease symptoms. Kimchi contains various natural antioxidants, and it is known that the functional activity varies depending on the ingredients and fermentation state. Black raspberries (BR) contain various bioactive compounds with antioxidant effects. This study investigated the antioxidant and liver-protection effects of kimchi supplemented with black raspberry juice powder (BJP). MATERIALS/METHODS BJP-added kimchi (BAK; at 0.5%, 1%, and 2% concentrations of BJP) and control (without BJP) were prepared and fermented at 4℃ for 4 weeks. Changes in the antioxidant effects of BAK during fermentation were investigated. In addition, the protective activity of BAK against oxidative stress was investigated in a liver cirrhosis-induced animal model in vivo. RESULTS BAK groups showed the acidity and pH of optimally ripened (OR) kimchi at 2 weeks of fermentation along with the highest lactic acid bacterial counts. Additionally, BAK groups displayed a higher content of phenolic compounds and elevated antioxidant activities relative to the control, with the highest antioxidant effect observed at 2 weeks of fermentation of OR 1% BAK. After feeding the OR 1% BAK to thioacetamide-induced liver cirrhosis rats, we observed decreased glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities and elevated superoxide dismutase activity. CONCLUSIONS These findings showed that the antioxidant effects of OR BAK and feeding of OR 1% BAK resulted in liver-protective effects against oxidative stress.
Collapse
Affiliation(s)
- Eun-Hye Ryu
- Berry & Biofood Research Institute, Jeonbuk 56417, Korea
| | - Ji-Su Yang
- World Institute of Kimchi, 86 Kimchiro, Namgu, Gwangju 61755, Korea
| | - Min-Jung Lee
- World Institute of Kimchi, 86 Kimchiro, Namgu, Gwangju 61755, Korea
| | - Sung Hyun Kim
- World Institute of Kimchi, 86 Kimchiro, Namgu, Gwangju 61755, Korea
| | - Hye-Young Seo
- World Institute of Kimchi, 86 Kimchiro, Namgu, Gwangju 61755, Korea
| | - Ji-Hye Jung
- World Institute of Kimchi, 86 Kimchiro, Namgu, Gwangju 61755, Korea
| |
Collapse
|
22
|
Flourat AL, Willig G, Teixeira ARS, Allais F. Eco-Friendly Extraction of Sinapine From Residues of Mustard Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|