1
|
Dong P, Fan Y, Huo YX, Sun L, Guo S. Pathway-Adapted Biosensor for High-Throughput Screening of O-Methyltransferase and its Application in Vanillin Synthesis. ACS Synth Biol 2024; 13:2873-2886. [PMID: 39208264 DOI: 10.1021/acssynbio.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vanillin is a widely used flavoring compound in the food, pharmaceutical, and cosmetics area. However, the biosynthesis of vanillin from low-cost shikimic acid is significantly hindered by the low activity of the rate-limiting enzyme, caffeate O-methyltransferase (COMT). To screen COMT variants with improved conversion rates, we designed a biosensing system that is adaptable to the COMT-mediated vanillin synthetic pathway. Through the evolution of aldehyde transcriptional factor YqhC, we obtained a dual-responsive variant, MuYqhC, which positively responds to the product and negatively responds to the substrate, with no response to intermediates. Using the MuYqhC-based vanillin biosensor, we successfully identified a COMT variant, Mu176, that displayed a 7-fold increase in the conversion rate compared to the wild-type COMT. This variant produced 2.38 mM vanillin from 3 mM protocatechuic acid, achieving a conversion rate of 79.33%. The enhanced activity of Mu176 was attributed to an enlarged binding pocket and strengthened substrate interaction. Applying Mu176 to Bacillus subtilis increased the level of vanillin production from shikimic acid by 2.39-fold. Further optimization of the production chassis, increasing the S-adenosylmethionine supply and the precursor concentration, elevated the vanillin titer to 1 mM, marking the highest level of vanillin production from shikimic acid in Bacillus. Our work highlights the significance of the MuYqhC-based biosensing system and the Mu176 variant in vanillin production.
Collapse
Affiliation(s)
- Pengyu Dong
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yunjuan Fan
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Tangshan, Hebei, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
2
|
Xu L, Liaqat F, Sun J, Khazi MI, Xie R, Zhu D. Advances in the vanillin synthesis and biotransformation: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2024; 189:113905. [DOI: 10.1016/j.rser.2023.113905] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
3
|
Isolation and Characterization of Bacteria and Fungi Associated with Agarwood Fermentation. Curr Microbiol 2022; 79:313. [DOI: 10.1007/s00284-022-02999-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
|
4
|
Reshmy R, Athiyaman Balakumaran P, Divakar K, Philip E, Madhavan A, Pugazhendhi A, Sirohi R, Binod P, Kumar Awasthi M, Sindhu R. Microbial valorization of lignin: Prospects and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126240. [PMID: 34737164 DOI: 10.1016/j.biortech.2021.126240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Lignin is the world's second most prevalent biomaterial, but its effective value-added product valorization methods are still being developed. The most common preparation processes for converting lignin to platform chemicals and biofuels are fragmentation and depolymerization. Due to its structural diversity, fragmentation generally produces a variety of products, necessitating tedious separation and purifying methods to isolate the desired products. Bacterial-based techniques are commonly utilized for lignin fragmentation due to their high metabolitic activity. Recent advancements in lignin valorization utilizing bacteria, such as lignin decomposing microbes and major pathways involved that can breakdown lignin into various valuable products namely lipids, furfural, vanillin, polyhydroxybutyrate, poly lactic acid blends were discussed in this review. This review also covers the genetic and fermentation methodologies to enhance lignin decomposition, challenges and future trends of microbe based lignin valorization.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - K Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur 602 117, Tamil Nadu, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
5
|
Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Novel Cold-Adapted Recombinant Laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a Green Catalyst in Biotransformation. Int J Mol Sci 2021; 22:9593. [PMID: 34502503 PMCID: PMC8431773 DOI: 10.3390/ijms22179593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cold-adapted enzymes are useful tools in the organic syntheses conducted in mixed aqueous-organic or non-aqueous solvents due to their molecular flexibility that stabilizes the proteins in low water activity environments. A novel psychrophilic laccase gene from Kabatiella bupleuri, G3 IBMiP, was spliced by Overlap-Extension PCR (OE-PCR) and expressed in Pichia pastoris. Purified recombinant KbLcc1 laccase has an optimal temperature of 30 °C and pH of 3.5, 5.5, 6.0, and 7.0 in the reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, sinapic acid, and syringaldazine, respectively. Moreover, laccase KbLcc1 is highly thermolabile, as it loses 40% of activity after 30 min at 40 °C and is inactivated at 50 °C after the same period of incubation. The new enzyme remained active with 1 mM of Ni2+, Cu2+, Mn2+, and Zn2+ and with 2 mM of Co2+, Ca2+, and Mg2+, but Fe2+ greatly inhibited the laccase activity. Moreover, 1% ethanol had no impact on KbLcc1, although acetone and ethyl acetate decreased the laccase activity. The presence of hexane (40%, v/v) caused a 58% increase in activity. Laccase KbLcc1 could be applied in the decolorization of synthetic dyes and in the biotransformation of ferulic acid to vanillin. After 5 days of reaction at 20 °C, pH 3.5, with 1 mM ABTS as a mediator, the vanillin concentration was 21.9 mg/L and the molar yield of transformation reached 14.39%.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (K.M.W.); (A.T.-C.)
| |
Collapse
|
6
|
Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synth Syst Biotechnol 2021; 6:180-191. [PMID: 34401544 PMCID: PMC8332661 DOI: 10.1016/j.synbio.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.
Collapse
Key Words
- Bacillus subtilis
- Biocatalysis
- Biofilms
- Biomaterials
- Bioremediation
- Extracellular DNA, (eDNA)
- Extracellular Polymeric Substance/ Exopolysaccharide, (EPS)
- Gold nanoparticles, (AuNPs)
- Green fluorescent protein, (GFP)
- Isopropylthio-β-d-galactoside, (IPTG)
- Menaquinoe-7, (MK-7)
- Microbial fuel cell, (MFC)
- Mono (2-hydroxyethyl) terephthalic acid, (MHET)
- N-Acetyl-d-neuraminic Acid, (Neu5Ac)
- N-acetylglucosamine, (GlcNAc)
- Nanoparticles, (NPs)
- Nickel nitriloacetic acid, (Ni-NTA)
- Organophosphorus hydrolase, (OPH)
- Paranitrophenol, (PNP)
- Paraoxon, (PAR)
- Quantum dots, (QDs)
- Spores
- Synthetic biology
- d-psicose 3-epimerase, (DPEase)
- l-Arabinose Isomerase, (L-AI)
- p-aminophenol, (PAP)
- β-Galactosidase, (β-Gal)
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
7
|
Weng C, Peng X, Han Y. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:84. [PMID: 33812391 PMCID: PMC8019502 DOI: 10.1186/s13068-021-01934-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/19/2021] [Indexed: 05/23/2023]
Abstract
Lignin, the most abundant renewable aromatic compound in nature, is an excellent feedstock for value-added bioproducts manufacturing; while the intrinsic heterogeneity and recalcitrance of which hindered the efficient lignin biorefinery and utilization. Compared with chemical processing, bioprocessing with microbial and enzymatic catalysis is a clean and efficient method for lignin depolymerization and conversion. Generally, lignin bioprocessing involves lignin decomposition to lignin-based aromatics via extracellular microbial enzymes and further converted to value-added bioproducts through microbial metabolism. In the review, the most recent advances in degradation and conversion of lignin to value-added bioproducts catalyzed by microbes and enzymes were summarized. The lignin-degrading microorganisms of white-rot fungi, brown-rot fungi, soft-rot fungi, and bacteria under aerobic and anaerobic conditions were comparatively analyzed. The catalytic metabolism of the microbial lignin-degrading enzymes of laccase, lignin peroxidase, manganese peroxidase, biphenyl bond cleavage enzyme, versatile peroxidase, and β-etherize was discussed. The microbial metabolic process of H-lignin, G-lignin, S-lignin based derivatives, protocatechuic acid, and catechol was reviewed. Lignin was depolymerized to lignin-derived aromatic compounds by the secreted enzymes of fungi and bacteria, and the aromatics were converted to value-added compounds through microbial catalysis and metabolic engineering. The review also proposes new insights for future work to overcome the recalcitrance of lignin and convert it to value-added bioproducts by microbial and enzymatic catalysis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Sivagurunathan P, Raj T, Mohanta CS, Semwal S, Satlewal A, Gupta RP, Puri SK, Ramakumar SSV, Kumar R. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. CHEMOSPHERE 2021; 268:129326. [PMID: 33360003 DOI: 10.1016/j.chemosphere.2020.129326] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Lignin is produced as a byproduct in cellulosic biorefinery as well in pulp and paper industries and has the potential for the synthesis of a variety of phenolics chemicals, biodegradable polymers, and high value-added chemicals surrogate to conventional petro-based fuels. Therefore, in this critical review, we emphasize the possible scenario for lignin isolation, transformation into value addition chemicals/materials for the economic viability of current biorefineries. Additionally, this review covers the chemical structure of lignocellulosic biomass/lignin, worldwide availability of lignin and describe various thermochemical (homogeneous/heterogeneous base/acid-catalyzed depolymerization, oxidative, hydrogenolysis etc.) and biotechnological developments for the production of bio-based low molecular weight phenolics, i.e. polyhydroxyalkanoates, vanillin, adipic acid, lipids etc. Besides, some functional chemicals applications, lignin-formaldehyde ion exchange resin, electrochemical and production of few targeted chemicals are also elaborated. Finally, we examine the challenges, opportunities and prospects way forward related to lignin valorization.
Collapse
Affiliation(s)
- P Sivagurunathan
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Tirath Raj
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Chandra Sekhar Mohanta
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Surbhi Semwal
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Alok Satlewal
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Ravi P Gupta
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Suresh K Puri
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Ravindra Kumar
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India.
| |
Collapse
|
9
|
Martău GA, Călinoiu LF, Vodnar DC. Bio-vanillin: Towards a sustainable industrial production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Valério R, Bernardino ARS, Torres CAV, Brazinha C, Tavares ML, Crespo JG, Reis MAM. Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Bioprocess Biosyst Eng 2021; 44:737-747. [PMID: 33389106 DOI: 10.1007/s00449-020-02482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
The growing consumer demand for natural products led to an increasing interest in vanillin production by biotechnological routes. In this work, the biotechnological vanillin production by Amycolatopsis sp. ATCC 39116 is studied using ferulic acid as precursor, aiming to achieve maximized vanillin productivities. During biotech-vanillin production, the effects of glucose, vanillin and ferulic acid concentrations in the broth proved to be relevant for vanillin productivity. Concerning glucose, its presence in the broth during the production phase avoids vanillin conversion to vanillic acid and, consequently, increases vanillin production. To avoid the accumulation of vanillin up to a toxic concentration level, a multiple-pulse-feeding strategy is implemented, with intercalated vanillin removal from the broth and biomass recovery. This strategy turned out fruitful, leading to 0.46 g L-1 h-1 volumetric productivity of vanillin of and a production yield of 0.69 gvanillin gferulic acid-1, which are among the highest values reported in the literature for non-modified bacteria.
Collapse
Affiliation(s)
- Rita Valério
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana R S Bernardino
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carla Brazinha
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria L Tavares
- Copam-Companhia Portuguesa de Amidos SA, 2695-722, S. João da Talha, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
11
|
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101498] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. BIORESOURCE TECHNOLOGY 2018; 269:557-566. [PMID: 30219494 DOI: 10.1016/j.biortech.2018.08.118] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Daolin Du
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
14
|
Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|