1
|
Wang N, Li L, Ma Y, Shen C, Ao Z, Song C, Mehmood MA, Zhang P, Liu Y, Sun X, Zhu H. Combined transcriptomics and metabolomics analyses reveal the molecular mechanism of heat tolerance in Pichia kudriavzevii. Front Microbiol 2025; 16:1572004. [PMID: 40270822 PMCID: PMC12014439 DOI: 10.3389/fmicb.2025.1572004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Pichia kudriavzevii is a prevalent non-Saccharomyces cerevisiae yeast in baijiu brewing. The aim of this study was to isolate a high temperature resistant Pichia kudriavzevii strain from the daqu of strong flavor baijiu and to elucidate its molecular mechanism. Methods Growth activity was assessed at temperatures of 37°C, 40°C, 45°C, and 50°C. Morphological changes were observed by scanning electron microscopy at 37°C, 45°C, and 50°C. Subsequent analysis of the transcriptomics and metabolomics was undertaken to elucidate the molecular mechanism of heat tolerance. Results The strain was able to tolerate high temperature of 50°C, undergoing substantial morphological alterations. Gene ontology (GO) analysis of the transcriptomics revealed that differentially expressed genes (DEGs) were enriched in pathways such as ATP biosynthesis process and mitochondrion; Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that DEGs were up regulated in oxidative phosphorylation. Utilising liquid chromatograph-mass spectrometer, a total of 463 cationic differential metabolites and 352 anionic differential metabolites were detected and screened for differential substances that were closely related to heat tolerance (NAD+ and ADP); KEGG analysis showed that metabolites were up regulated in purine metabolism. Furthermore, correlation analyses of transcriptomics-metabolomics demonstrated a strong positive correlation between the metabolites NAD+ and ADP, and multiple DEGs of the oxidative phosphorylation pathway. Discussion These results suggest that the heat tolerant strain can be able to counteract high temperature environment by up regulating energy metabolism (especially oxidative phosphorylation) to increase ATP production.
Collapse
Affiliation(s)
- Ning Wang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Lu Li
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Zonghua Ao
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Chuan Song
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou, China
| | - Muhammad Aamer Mehmood
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Puyu Zhang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd., Yibin, China
| | - Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
2
|
Kham NNN, Phovisay S, Unban K, Kanpiengjai A, Saenjum C, Lumyong S, Shetty K, Khanongnuch C. A Thermotolerant Yeast Cyberlindnera rhodanensis DK Isolated from Laphet-so Capable of Extracellular Thermostable β-Glucosidase Production. J Fungi (Basel) 2024; 10:243. [PMID: 38667914 PMCID: PMC11051217 DOI: 10.3390/jof10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to utilize the microbial resources found within Laphet-so, a traditional fermented tea in Myanmar. A total of 18 isolates of thermotolerant yeasts were obtained from eight samples of Laphet-so collected from southern Shan state, Myanmar. All isolates demonstrated the tannin tolerance, and six isolates were resistant to 5% (w/v) tannin concentration. All 18 isolates were capable of carboxy-methyl cellulose (CMC) degrading, but only the isolate DK showed ethanol production at 45 °C noticed by gas formation. This ethanol producing yeast was identified to be Cyberlindnera rhodanensis based on the sequence analysis of the D1/D2 domain on rRNA gene. C. rhodanensis DK produced 1.70 ± 0.01 U of thermostable extracellular β-glucosidase when cultured at 37 °C for 24 h using 0.5% (w/v) CMC as a carbon source. The best two carbon sources for extracellular β-glucosidase production were found to be either xylose or xylan, with β-glucosidase activity of 3.07-3.08 U/mL when the yeast was cultivated in the yeast malt extract (YM) broth containing either 1% (w/v) xylose or xylan as a sole carbon source at 37 °C for 48 h. The optimal medium compositions for enzyme production predicted by Plackett-Burman design and central composite design (CCD) was composed of yeast extract 5.83 g/L, peptone 10.81 g/L and xylose 20.20 g/L, resulting in a production of 7.96 U/mL, while the medium composed (g/L) of yeast extract 5.79, peptone 13.68 and xylan 20.16 gave 9.45 ± 0.03 U/mL for 48 h cultivation at 37 °C. Crude β-glucosidase exhibited a remarkable stability of 100%, 88% and 75% stable for 3 h at 35, 45 and 55 °C, respectively.
Collapse
Affiliation(s)
- Nang Nwet Noon Kham
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Somsay Phovisay
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.N.N.K.); (S.P.)
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kalidas Shetty
- Global Institute of Food Security and International Agriculture (GIFSIA), Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Bitew D, Tesfaye A, Andualem B. Isolation, screening and identification of ethanol producing yeasts from Ethiopian fermented beverages. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00815. [PMID: 37876548 PMCID: PMC10590766 DOI: 10.1016/j.btre.2023.e00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
The growing demand for renewable energy sources such as bioethanol is facing a lack of efficient ethanologenic microbes. This study aimed to isolate and screen ethanologenic yeasts from Ethiopian fermented beverages. A progressive screening and selection approach was employed. Selected isolates were evaluated for bioethanol production using banana peel waste as substrate. A total of 102 isolates were obtained. Sixteen isolates were selected based on their tolerance to stress conditions and carbohydrate fermentation and assimilation capacity. Most found moderately tolerant to 10 %, but slightly tolerant at 15 and 20 % (v/v) ethanol concentration. They yield 15.3 to 20.1 g/L and 9.1 ± 0.6 to 12.9 ± 1.3 g/L ethanol from 2 % (w/v) glucose and 80 g/L banana peel, respectively. Molecular characterization identified them as Saccharomyces cerevisiae strains. Results demonstrate insight about their potential role in the ethanol industry. Optimization of the fermentation conditions is recommended.
Collapse
Affiliation(s)
- Dagnew Bitew
- Department of Biology, Mizan-Tepi University, P. BOX: 260, Ethiopia
- Institute of Biotechnology, University of Gondar, P.BOX: 196, Ethiopia
| | - Anteneh Tesfaye
- Institute of Biotechnology, Addis Ababa University, P.BOX: 1176, Ethiopia
- BioTEI, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
4
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
5
|
Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the petroleum-based chemical synthesis of industrial products causes serious environmental and societal issues, biotechnological production using microorganisms is an alternative approach to achieve a more sustainable economy. In particular, the yeast Saccharomyces cerevisiae is widely used as a microbial cell factory to produce biofuels and valuable biomaterials. However, product profiles are often restricted due to the Crabtree-positive nature of S. cerevisiae, and ethanol production from lignocellulose is possibly enhanced by developing alternative stress-resistant microbial platforms. With desirable metabolic pathways and regulation in addition to strong resistance to diverse stress factors, nonconventional yeasts (NCY) may be considered an alternative microbial platform for industrial uses. Irrespective of their high industrial value, the lack of genetic information and useful gene editing tools makes it challenging to develop metabolic engineering-guided scaled-up applications using yeasts. The recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system is a powerful gene editing tool for NCYs. This review describes the current status of and recent advances in promising NCYs in terms of industrial and biotechnological applications, highlighting CRISPR-Cas9 system-based metabolic engineering strategies. This will serve as a basis for the development of novel yeast applications.
Collapse
|
6
|
Exploring Natural Fermented Foods as a Source for New Efficient Thermotolerant Yeasts for the Production of Second-Generation Bioethanol. ENERGIES 2022. [DOI: 10.3390/en15144954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the cost-effectiveness of bioethanol production at high temperatures, there is an enduring need to find new thermotolerant ethanologenic yeasts. In this study, a total of eighteen thermotolerant yeasts were isolated from various natural fermented products in Morocco. Ethanol production using 50 g/L glucose or 50 g/L xylose as the sole carbon source revealed potential yeasts with high productivities and volumetric ethanol productivities at high temperatures. Based on molecular identification, the selected thermotolerant fermentative isolates were affiliated with Pichia kudriavzevii, Kluyveromyces marxianus, and Kluyveromyces sp. During the simultaneous saccharification and fermentation of lignocellulosic biomass at a high temperature (42 °C), the designated yeast P. kudriavzevii YSR7 produced an ethanol concentration of 22.36 g/L, 18.2 g/L and 6.34 g/L from 100 g/L barley straw (BS), chickpea straw (CS), and olive tree pruning (OTP), respectively. It also exhibited multi-stress tolerance, such as ethanol, acetic acid, and osmotic tolerance. Therefore, the yeast P. kudriavzevii YSR7 showed promising attributes for biorefinery-scale ethanol production in the future.
Collapse
|
7
|
Abstract
Although beer is a widely used beverage in many cultures, there is a need for a new drinking alternative in the face of rising issues such as health concerns or weight problems. However, non-alcoholic and low-alcoholic beers (NABLAB) still have some sensory problems that have not been fully remedied today, such as “wort-like”/”potato-like” flavours or a lack of aroma. These defects are due to the lack of alcohol (and the lack of the aldehyde-reducing effect of alcohol fermentation), as well as production techniques. The use of new yeast strains that cannot ferment maltose—the foremost sugar in the wort—is highly promising to produce a more palatable and sustainable NABLAB product because production with these yeast strains can be performed with standard brewery equipment. In the scientific literature, it is clear that interest in the production of NABLAB has increased recently, and experiments have been carried out with maltose-negative yeast strains isolated from many different environments. This study describes maltose-negative yeasts and their aromatic potential for the production of NABLAB by comprehensively examining recent academic studies.
Collapse
|
8
|
Pongcharoen P. The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Lett Appl Microbiol 2022; 75:36-44. [PMID: 35315114 DOI: 10.1111/lam.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h-1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial-scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.
Collapse
Affiliation(s)
- Pongsanat Pongcharoen
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand.,Center of Excellence in Research in Agricultural Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Nieto-Sarabia VL, Ballinas-Cesatti CB, Melgar-Lalanne G, Cristiani-Urbina E, Morales-Barrera L. Isolation, identification, and kinetic and thermodynamic characterization of a Pichia kudriavzevii yeast strain capable of fermentation. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021; 9:microorganisms9030654. [PMID: 33809953 PMCID: PMC8004283 DOI: 10.3390/microorganisms9030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.
Collapse
|
11
|
Mead HL, Hamm PS, Shaffer IN, Teixeira MDM, Wendel CS, Wiederhold NP, Thompson GR, Muñiz-Salazar R, Castañón-Olivares LR, Keim P, Plude C, Terriquez J, Galgiani JN, Orbach MJ, Barker BM. Differential Thermotolerance Adaptation between Species of Coccidioides. J Fungi (Basel) 2020; 6:E366. [PMID: 33327629 PMCID: PMC7765126 DOI: 10.3390/jof6040366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis, or Valley fever, is caused by two species of dimorphic fungi. Based on molecular phylogenetic evidence, the genus Coccidioides contains two reciprocally monophyletic species: C. immitis and C. posadasii. However, phenotypic variation between species has not been deeply investigated. We therefore explored differences in growth rate under various conditions. A collection of 39 C. posadasii and 46 C. immitis isolates, representing the full geographical range of the two species, was screened for mycelial growth rate at 37 °C and 28 °C on solid media. The radial growth rate was measured for 16 days on yeast extract agar. A linear mixed effect model was used to compare the growth rate of C. posadasii and C. immitis at 37 °C and 28 °C, respectively. C. posadasii grew significantly faster at 37 °C, when compared to C. immitis; whereas both species had similar growth rates at 28 °C. These results indicate thermotolerance differs between these two species. As the ecological niche has not been well-described for Coccidioides spp., and disease variability between species has not been shown, the evolutionary pressure underlying the adaptation is unclear. However, this research reveals the first significant phenotypic difference between the two species that directly applies to ecological research.
Collapse
Affiliation(s)
- Heather L. Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Paris S. Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Isaac N. Shaffer
- School of Informatics, Computers, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | | | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 77030, USA;
| | - George R. Thompson
- Departments of Internal Medicine Division of Infectious Diseases, and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA 95616, USA;
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología Molecular, Escuela Ciencias de la Salud, Universidad Autónoma de Baja California, Unidad Valle Dorado, Ensenada 22890, Mexico;
| | - Laura Rosio Castañón-Olivares
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico;
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
| | - Carmel Plude
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff, AZ 86001, USA; (C.P.); (J.T.)
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| | - Marc J. Orbach
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (H.L.M.); (P.K.)
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ 85721, USA; (J.N.G.); (M.J.O.)
| |
Collapse
|
12
|
Martínez-Avila O, Sánchez A, Font X, Barrena R. 2-phenylethanol (rose aroma) production potential of an isolated pichia kudriavzevii through solid-state fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
14
|
Phong HX, Klanrit P, Dung NTP, Yamada M, Thanonkeo P. Isolation and characterization of thermotolerant yeasts for the production of second-generation bioethanol. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01468-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|