1
|
Teixeira AVS, Quitete FT, Martins BC, Peixoto TC, Ribeiro MDS, Velasco PCD, Miranda C, Resende ADC, Costa DC, Atella GC, Mucci DDB, Souza-Mello V, Martins FF, Daleprane JB. Metabolic consequences of interesterified palm oil and PCB-126 co-exposure in C57BL/6 mice. Food Chem Toxicol 2024; 192:114965. [PMID: 39197524 DOI: 10.1016/j.fct.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined as morphofunctional changes in the liver. Studies have shown that Westernized eating patterns and environmental pollutants can directly induce the development of MASLD. This study evaluates the effect of co-exposure to interesterified palm oil (IPO) and 3,3',4,4',5-pentachlorobiphenyl (PCB-126) on the progression of MASLD in an animal model. C57BL/6 mice were fed IPO and co-exposed to PCB-126 for ten weeks. The co-exposure led to an imbalance in carbohydrate metabolism, increased systemic inflammation markers, and morphofunctional changes in the liver. These liver changes included the presence of inflammatory cells, fibrosis, alterations in aspartate transaminase (AST) and alanine transaminase (ALT) enzymes, and imbalance in gene expression related to fatty acid β-oxidation, de novo lipogenesis, mitochondrial dynamics, and endoplasmic reticulum stress. Separate exposures to IPO and PCB-126 affected metabolism and MASLD progression. Nutritional and lifestyle factors may potentiate the onset and severity of MASLD.
Collapse
Affiliation(s)
- Ananda Vitoria Silva Teixeira
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Fernanda Torres Quitete
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Bruna Cadete Martins
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Thamara Cherem Peixoto
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Mayara da Silva Ribeiro
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Patricia Coelho de Velasco
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Caroline Miranda
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Angela de Castro Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Geórgia Correa Atella
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela de Barros Mucci
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, 205521031, Brazil
| | - Fabiane Ferreira Martins
- Department of Morphology Federal University of Rio Grande do Norte, Rio Grande do Norte, 59078-970, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Interaction Studies between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, 20550-900, Brazil.
| |
Collapse
|
2
|
Marikkar J, Yanty N, Musthafa S, Miskandhar M. Recent advances in plant-based fat formulation as substitute for lard. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0439211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lard is one of the main animal fats used as shortening and frying medium. Religious prohibitions and negative health perceptions regarding animal fats have caused concerns about the consumption of lard among communities living around the world. Various research efforts have been made in the past to formulate plant-based fats and shortenings as substitutes for the exclusion of lard from food. This would eventually help countries to regularize food formulations according to their religious compliance. As the existence of a single plant fat as substitute for lard has not been discovered from nature, researchers attempted to study the possibility of mixing native fats and oils such as enkabang fat, canola oil, guava oil, palm oil, palm stearin, soybean oil and cocoa butter as raw materials. The compatibility of the formulated plant-based fat substitute for lard was assessed in terms of chemical composition and thermo-physical properties. The formulated plant-based shortenings and lard shortening were simply plastic fats based on their consistency value and existence of β’ and β-form polymorphs of which the β’ -form was dominant. The functional properties of formulated plant-based shortenings and lard were also compared in the formulation of cookies. Although a substantial amount of work has been done over the past decade, there was hardly any discussion on the pros and cons of the approaches used for raw material selection and the criteria adopted in the assessment of the formulated products. Hence, this review intended to bring an update of the progress of studies with regard to these two aspects.
Collapse
|
3
|
Zarei Jelyani A, Tavakoli J, Lashkari H, Aminlari M. Different effect of chemical refining process on Baneh ( Pistacia atlantica var mutica) kernel oil: Regeneration of tocopherols. Food Sci Nutr 2021; 9:5557-5566. [PMID: 34646525 PMCID: PMC8498077 DOI: 10.1002/fsn3.2515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022] Open
Abstract
The present study was conducted to investigate the impact of refining process on the chemical properties (fatty acid composition and tocopherols, sterols, and polyphenolic contents), qualitative parameters (peroxide value, acid value, and p-anisidine value), and antioxidant activity (DPPH radical scavenging assay and FRAP test) of Baneh (Pistacia atlantica var mutica) kernel oil. The results revealed that the refining process had no significant effect on the fatty acid composition. A major finding of this research was the increase in the tocopherol and sterol content up to the bleaching stage followed by their decrease in the deodorizing phase. Some tocopherol and sterol compounds in crude oil were dimerized or attached to other compounds by ester bonding, which are released during some stages of the refining process and this factor is responsible for their increase. In fact, during this process, these compounds are regenerated. The occurrence of this phenomenon in the refining process improved the DPPH radical scavenging power of Baneh kernel oil up to the bleaching stage. Moreover, the content of phenolic compounds decreased after refining of Baneh kernel oil, and only in the deodorizing stage, an increase of these compounds was observed. In general, the results of this study showed that the refining process had a completely different effect on the antioxidant compounds (especially tocopherols) compared to other oils.
Collapse
Affiliation(s)
- Aniseh Zarei Jelyani
- Food Science and Technology DepartmentSarvestan BranchIslamic Azad UniversitySarvestanIran
| | - Javad Tavakoli
- Department of Food Science and TechnologyFaculty of AgricultureJahrom UniversityJahromIran
| | - Hannan Lashkari
- Department of Food Science and TechnologyZarin Dasht BranchIslamic Azad UniversityZarin DashtIran
| | - Mahmoud Aminlari
- Department of BiochemistrySchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
4
|
Hosseinialhashemi M, Tavakoli J, Rafati A, Ahmadi F. The aplication of Pistacia khinjuk extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Sci Nutr 2021; 9:920-928. [PMID: 33598175 PMCID: PMC7866579 DOI: 10.1002/fsn3.2057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022] Open
Abstract
In the present study, a hydroalcoholic extract of P. khinjuk was obtained by sonication method at 60°C for 50 min. The measurement revealed that the total phenolic content of the extract was 46.0 mg/g. The results showed that the extract has an antioxidant activity of 73.5% and 8.3 (µmol TE/g DW) in DPPH radical scavenging method and FRAP assay, respectively. Also, Balango (Lallemantia royleana) and Fenugreek (Trigonella foenum-graecum) seed gum and their composition (1:1) were used to prepare the nanoemulsion with P. khinjuk extract. The droplet mean size of nanoemulsions was ranged from 310.34 to 354.19 nm. The highest encapsulation efficiency was observed in Balango nanoemulsion. P. khinjuk extract nanoemulsion coating with Balango and TBHQ was added to sunflower oil at 200 and 100 ppm, respectively. During 24-day storage at 60°C, samples were investigated for peroxide, acid, and p-anisidine values at 4-day intervals. The results showed that oils containing nanoemulsion had the highest stability during storage. However, in all samples peroxide, acid and p-anisidine values increased but the rate of oxidation in samples containing both synthetic and natural antioxidants was slower than the control sample.
Collapse
Affiliation(s)
- Marziehalsadat Hosseinialhashemi
- Department of Food Science and TechnologyFaculty of Agriculture & Nutrition, Sarvestan BranchIslamic Azad UniversitySarvestanFarsIran
| | - Javad Tavakoli
- Department of Food Science and TechnologyFaculty of AgricultureJahrom UniversityJahromFarsIran
| | - Alireza Rafati
- Division of Pharmaceutical Chemistry and Food ScienceSarvestan BranchIslamic Azad UniversitySarvestanFarsIran
| | - Fatemeh Ahmadi
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShirazFarsIran
| |
Collapse
|
6
|
Kowalska M, Woźniak M, Żbikowska A, Kozłowska M. Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids. Biomolecules 2020; 10:biom10010115. [PMID: 31936515 PMCID: PMC7022500 DOI: 10.3390/biom10010115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
The study aims to investigate the physicochemical properties and stability of the dispersion systems containing structured fats as a fatty base. In this work, calf tallow and pumpkin seed oil blends were chemically interesterified at various ratios (9:1, 3:1, 3:2, 3:3, 2:3, and 1:3) to produce structured lipids. Fatty acids composition, polar and nonpolar fraction content, and acid value were determined for the raw fats and interesterified blends. Afterwards, selected blends were applied in emulsion systems. Stability, microstructure, color and texture of emulsions were evaluated. The chemical interesterification had an effect on the modified blends properties, and caused an increase in polar fraction content and acid value, and a decrease in nonpolar fraction content. No effect on the fatty acids composition has been found. The evaluation of the prepared emulsions results allowed us to select two of the most stable and favorable samples—both containing chemically interesterified calf tallow and a pumpkin seed oil blend in a ratio of 1:3 as a fatty base, and xanthan gum or carboxymethylcellulose as a thickener. The obtained dispersions, containing fatty bases with improved physicochemical properties and desirable functionality, can be applied as food, cosmetic, and pharmaceutical emulsions.
Collapse
Affiliation(s)
- Małgorzata Kowalska
- Department of Chemistry and Organic Materials, Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities, 27 Chrobrego St, 26-600 Radom, Poland
- Correspondence: ; Tel.: +48-48-3617547
| | - Magdalena Woźniak
- Department of Chemistry and Organic Materials, Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities, 27 Chrobrego St, 26-600 Radom, Poland
| | - Anna Żbikowska
- Department of Food Technology, Faculty of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-787 Warsaw, Poland;
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C, 02-787 Warsaw, Poland;
| |
Collapse
|