1
|
Jimoh AA, Adebo OA. Evaluation of antiobesogenic properties of fermented foods: In silico insights. J Food Sci 2025; 90:e70074. [PMID: 40047326 PMCID: PMC11884235 DOI: 10.1111/1750-3841.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Obesity prevalence has steadily increased over the past decades. Standard approaches, such as increased energy expenditure, lifestyle changes, a balanced diet, and the use of specific drugs, are the conventional strategies for preventing or treating the disease and its associated complications. Fermented foods and their subsequent bioactive constituents are now believed to be a novel strategy that can complement already existing approaches for managing and preventing this disease. Recent developments in systems biology and bioinformatics have made it possible to model and simulate compounds and disease interactions. The adoption of such in silico models has contributed to the discovery of novel fermented product targets and helped in testing hypotheses regarding the mechanistic impact and underlying functions of fermented food components. From the studies explored, key findings suggest that fermented foods affect adipogenesis, lipid metabolism, appetite regulation, gut microbiota composition, insulin resistance, and inflammation related to obesity, which could lead to new ways to treat these conditions. These outcomes were linked to probiotics, prebiotics, metabolites, and complex bioactive substances produced during fermentation. Overall, fermented foods and their bioactive compounds show promise as innovative tools for obesity management by influencing metabolic pathways and overall gut health.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, DoornfonteinJohannesburgSouth Africa
| |
Collapse
|
2
|
Niv D, Anavi E, Yaval L, Abbas A, Rytwo G, Gutman R. Sepiolite-Chitosan-Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients 2024; 16:3958. [PMID: 39599744 PMCID: PMC11597185 DOI: 10.3390/nu16223958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background; obesity and nonalcoholic fatty liver disease (NAFLD) reduce life expectancy; nonoperative interventions show poor results. Individually, chitosan (1% w/w), acetic acid (AA 0.3-6.5% w/w), and sepiolite clay (5% w/w) attenuate high-fat-diet-induced obesity (DIO) via reduced energy digestibility and increased energy expenditure. Objectives; therefore, we hypothesized that a chitosan-sepiolite biocomposite suspended in AA would attenuate DIO and NAFLD to a greater extent than AA alone via its more substantial adsorption of nonpolar molecules. Methods; we tested this dietary supplement in C57BL/6J mice fed a high-fat diet (HFD) compared to an unsupplemented HFD and an HFD supplemented with a bile acid sequestrant (cholestyramine) or standalone AA. Results; biocomposite supplementation reduced DIO gain by 60% and abolished hepatic liver accumulation, whereas standalone AA showed mild attenuation of DIO gain and did not prevent HFD-induced hepatic fat accumulation. The biocomposite intake was accompanied by a lower digestibility (-4 point %) counterbalanced by increased intake; hence, it did not affect energy absorption. Therefore, DIO attenuation was suggested to be related to higher energy expenditure, a phenomenon not found with AA alone, as supported by calculated energy expenditure using the energy balance method. Conclusions; these results support further investigation of the biocomposite's efficacy in attenuating obesity and NAFLD, specifically when applied with a restricted diet. Future studies are needed to determine this biocomposite's safety, mechanism of action, and efficacy compared to its components given separately or combined with other ingredients.
Collapse
Affiliation(s)
- Dalia Niv
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Eli Anavi
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Laris Yaval
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Atallah Abbas
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Giora Rytwo
- Environmental Physical Chemistry Laboratory, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel;
- Departments of Environmental and Water Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL—Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee 12210, Israel
| |
Collapse
|
3
|
Jalili M, Nazari M, Magkos F. Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int J Mol Sci 2023; 24:ijms24032665. [PMID: 36768984 PMCID: PMC9916812 DOI: 10.3390/ijms24032665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can also increase the number of beneficial gut bacteria. Regular consumption of fermented foods has been associated with a variety of health benefits (although some health risks also exist), including improved digestion, enhanced immunity, and greater weight loss, suggesting that fermented foods have the potential to help in the design of effective nutritional therapeutic approaches for obesity. In this article, we provide a comprehensive overview of the health effects of fermented foods and the corresponding mechanisms of action in obesity and obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Mahsa Jalili
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Maryam Nazari
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan JF62+4W5, Iran
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1165 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
4
|
Methionine strengthens anti-inflammation of rice protein via depressing NF-κB activation and stimulating Msr expression in rats fed cholesterol-enriched diets. Food Sci Biotechnol 2022; 31:745-758. [PMID: 35646410 PMCID: PMC9133292 DOI: 10.1007/s10068-022-01074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is an inducer of inflammation. To elucidate the link of depression of ox-LDL accumulation and anti-inflammatory function of rice protein (RP) whether dependent on methionine availability, growing and adult rats were fed RP and methionine-supplemented RP (RM) under cholesterol-enriched dietary condition. After two weeks feeding, RP and RMs exerted the anti-inflammatory effects through up-regulating IL-10, while RP and RMs significantly reduced ox-LDL levels and effectively suppressed the expressions of inflammatory mediators (COX-2, IL-1β, IL-6, TNF-α, iNOS). The anti-inflammatory molecular mechanism was to inhibit NF-κB activation and to simulate methionine sulfoxide reductase expression. Results showed, under cholesterol-enriched dietary condition, the anti-inflammatory action can be induced by RP and enhanced by methionine in growing and adult rats. The present study reveals a link of the decreased ox-LDL accumulation with the anti-inflammatory function of RP, which is dependent on methionine availability and independent of dietary cholesterol.
Collapse
|
5
|
Lim JM, Lee SH, Jeong DY, Jo SW, Kamala-Kannan S, Oh BT. Significance of LED lights in enhancing the production of vinegar using Acetobacter pasteurianus AP01. Prep Biochem Biotechnol 2021; 52:38-47. [PMID: 33904376 DOI: 10.1080/10826068.2021.1907406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vinegar is a common food additive produced by acetic acid bacteria (AAB) during fermentation process. Low yield and long incubation time in conventional vinegar fermentation processes has inspired research in developing efficient fermentation techniques by the activation of AAB for acetic acid production. The present study intends to enhance vinegar production using acetic acid bacteria and light emitting diode (LED). A total of eight acetic acid bacteria were isolated from Korean traditional vinegar and assessed for vinegar production. Isolate AP01 exhibited maximum vinegar production and was identified as Acetobacter pasteurianus based on the 16S rRNA sequences. The optimum fermentation conditions for the isolate AP01 was incubation under static condition at 30 °C for 10 days with 6% initial ethanol concentration. Fermentation under red LED light exhibited maximum vinegar production (3.6%) compared to green (3.5%), blue (3.2%), white (2.2%), and non-LED lights (3.0%). Vinegar produced using red LED showed less toxicity to mouse macrophage cell line (RAW 264.7) and high inhibitory effects on nitric oxide and IL-6 production. The results confirmed that red LED light could be used to increase the yield and decrease incubation time in vinegar fermentation process.
Collapse
Affiliation(s)
- Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Seong-Hyeon Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Seung-Wha Jo
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
6
|
Puffing of Turmeric ( Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation. Antioxidants (Basel) 2020; 9:antiox9100931. [PMID: 33003300 PMCID: PMC7600901 DOI: 10.3390/antiox9100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric was investigated for effect on macrophage energy metabolism. The high-performance liquid chromatography analysis revealed that puffing of turmeric significantly induced the degradation of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol. The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages. Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR, resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages. Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous processing method for turmeric as an anti-inflammatory food ingredient.
Collapse
|