1
|
Ibadullayeva AK, Kasela M, Kozhanova KK, Kadyrbayeva GM, Widelski J, Wojtanowski K, Józefczyk A, Suśniak K, Okińczyc P, Tleubayeva MI, Karaubayeva AA, Zhandabayeva MA, Mukhamedsadykova AZ, Malm A. Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia. Molecules 2024; 29:5749. [PMID: 39683911 DOI: 10.3390/molecules29235749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The genus Inula has been used in folk medicine for centuries; however, the data concerning Inula britannica L. are scarce. This study aimed at investigating the chemical composition of methanolic and ethanolic extracts from the aerial parts of I. britannica collected in Kazakhstan and evaluating their antimicrobial and antioxidant properties, with special attention being paid to polyphenols. The total content of polyphenols and flavonoids in the extracts was determined colorimetrically, while their qualitative and quantitative analyses were conducted using HPLC/ESI-QTOF-MS and RP-HPLC/DAD. Their antioxidant potential was determined using the FRAP and DPPH methods, whereas their antimicrobial activity was determined by the microdilution method towards a panel of reference microorganisms, including pathogens of the human gastrointestinal tract. Chemical analysis demonstrated that the methanolic extract had a higher content of polyphenols (58.02 vs. 43.44 mg GAE/g) and flavonoids (21.69 vs. 13.91 mg QUE/g) than the ethanolic extract. In both extracts, 15 compounds were identified, with the highest contents being those of cynarine (13.96 and 11.68 mg/g) and chlorogenic acid (9.22 and 5.09 mg/g). The DPPH assay showed a higher antioxidant activity of the methanolic extract (19.78 ± 0.12 mg GAE/g) in comparison to that of the ethanolic extract (15.56 ± 0.24 mg GAE/g). Similarly, the FRAP method showed that the methanolic extract exerted a much higher antioxidant activity (5.07 ± 0.18 mmol Fe2+/g) than the ethanolic extract (0.39 ± 0.01 mmol Fe2+/g). In contrast, both extracts showed similar antimicrobial properties, with the highest activity being that against Helicobacter pylori ATCC 43504 (MIC = 0.125-0.25 mg/mL). This paper presents novel data on I. britannica L., implying its significance as a source of valuable active compounds and being a prerequisite for further biological studies.
Collapse
Affiliation(s)
- Aktolkyn K Ibadullayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Kaldanay K Kozhanova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Gulnara M Kadyrbayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Krzysztof Wojtanowski
- Independent Laboratory of Chemistry of Natural Products, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 211a Borowska Street, 50-556 Wrocław, Poland
| | - Meruyert I Tleubayeva
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Aigerim A Karaubayeva
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Moldir A Zhandabayeva
- Department of Pharmaceutical Technology, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Aigerim Z Mukhamedsadykova
- Department of Engineering Disciplines of Good Practices, School of Pharmacy, Kazakh National Medical University, 88 Tole Bi Street, Almaty 050012, Kazakhstan
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Meng X, Sun L, Meng X, Bi Q. The protective effect of Ergolide in osteoarthritis: In vitro and in vivo studies. Int Immunopharmacol 2024; 127:111355. [PMID: 38157693 DOI: 10.1016/j.intimp.2023.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis (OA), a prevalent degenerative condition, occurs due to the deterioration of joint tissues and cells. Consequently, safeguarding chondrocytes against damage caused by inflammation is an area of future research emphasis. There is growing evidence that Ergolide (ERG) has multiple biological functions. Nevertheless, it is still uncertain whether it can hinder the advancement of OA. In this study, we investigate the ERG's potential to reduce inflammation and protect cartilage. ERG treatment in vitro effectively inhibited the excessive production of pro-inflammatory substances, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-α (TNF-α), leading to their complete suppression. Furthermore, ERG suppressed the production of matrix-degrading enzymes (ADAMTS-5) and matrix metalloproteinase 13 (MMP13), consequently impeding the breakdown of extracellular matrix (ECM) and restraining the synthesis of collagenase II and Aggrecan. Through the P38/MAPK pathway, we discovered that ERG hinders the activation of NF-κB in chondrocytes induced by IL-1β. The protective effect of ERG was enhanced by the p38 MAPK inhibitor SB203580. In vivo, ERG further demonstrated protective effects on cartilage in animal models of DMM. In conclusion, the study has discovered that ERG exhibits innovative therapeutic potential in the context of OA.
Collapse
Affiliation(s)
- Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liyang Sun
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiumei Meng
- The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Sports Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Bae WY, Lee DU, Yu HS, Lee NK, Paik HD. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food Chem 2023; 429:136844. [PMID: 37454617 DOI: 10.1016/j.foodchem.2023.136844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to increase epigallocatechin gallate (EGCG) levels and attenuate the toxicity in Inulabritannica by fermentation using Lactobacillus plantarum SY12. The optimal medium was composed of 10 g of I. britannica, 4 g of xylose, 5 g of soytone, and 5 g of beef extract. The predicted value of EGCG was 237.327 μg/mL. To investigate damage in HepG2 cell lines by I. britannica extracts (IE) or fermented I. britannica extracts (FIE), cell viability, mitochondria membrane potential, the expression of apoptosis and autophagy genes, and chemical composition were measured. FIE increased cell viability, regulation of the gene expression (decreased p53, p62, p-ERK 1/2, and p-p38; increased CDK2 and CDK4) compared with IE. These results were explained by an increase in 1,3-dicaffeoylquinic acid and a decrease in 1-O-caffeoylquinic acid, 1-O-acetylbritannilactone, and ergolide in FIE. In conclusion, these results indicated that fermentation can mitigate the toxicity in I. britannica.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
4
|
Kim E, Yang SM, Kim HY. Weissella and the two Janus faces of the genus. Appl Microbiol Biotechnol 2023; 107:1119-1127. [PMID: 36680587 DOI: 10.1007/s00253-023-12387-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
The genus Weissella belongs to the lactic acid bacteria group. It occurs naturally in foods and is a component of the human microbiome. A few Weissella species are candidate probiotics due to their potential for survival under the harsh conditions present in the gastrointestinal tract of humans and animals. Various species have also shown potential for treating and preventing periodontal disease, skin pathologies, and atopic dermatitis; some are used as starters for the fermentation of foods due to their production of exopolysaccharides; and others are used as protective cultures due to their production of weissellicin, a bacteriocin. However, a few Weissella species are opportunistic pathogens, such as W. ceti, which is the etiological agent of weissellosis, a disease in rainbow trout. Additionally, most Weissella species are intrinsically vancomycin-resistant. Thus, the Weissella genus is important from both medical and industrial points of view, and the Janus faces of this genus should be considered in any expected biotechnological applications. In this review, we present an overview of the probiotic potential and pathogenic cases of the Weissella genus reported in the literature.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
5
|
Song MW, Park JY, Kim WJ, Kim KT, Paik HD. Fermentative effects by probiotic Lactobacillus brevis B7 on antioxidant and anti-inflammatory properties of hydroponic ginseng. Food Sci Biotechnol 2023; 32:169-180. [PMID: 36647519 PMCID: PMC9839932 DOI: 10.1007/s10068-022-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Soil-cultivation presents environmental limitations and requires considerable labor, space, and water supply. Alternatively, hydroponically-cultured ginseng (HG) was improved its productivity, availability, and functionality. Improvement of bio-functionality by probiotic fermentation also has been studied. Therefore, in this study, HG was fermented using probiotics to enhance antioxidant and anti-inflammatory activities. Soil-cultivated ginseng (SG), 1 and 2-year HG (HG1, HG2) were extracted using 70% ethanol and fermented by Lactobacillus brevis B7. After fermentation, the phenolic and flavonoid contents, and antioxidant and NO scavenging activities were increased, and HG showed higher bioactivities than SG. Particularly, fermented HG2 showed the highest antioxidant and anti-inflammatory activities and significantly decreased the level of inflammatory mediators. Furthermore, fermented HG2 also effectively inhibited NF-κB signaling pathway. These results suggested that fermented HG significantly enhanced functionality compared to SG and non-fermented HG. This suggests that fermented HG is a potentially useful ingredient for developing health-functional foods or pharmaceutical materials.
Collapse
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| |
Collapse
|
6
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
7
|
Choi GH, Bock HJ, Lee NK, Paik HD. Soy yogurt using Lactobacillus plantarum 200655 and fructooligosaccharides: neuroprotective effects against oxidative stress. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4870-4879. [PMID: 36276546 PMCID: PMC9579260 DOI: 10.1007/s13197-022-05575-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the effect of Lactobacillus plantarum 200655 and fructooligosaccharides (FOS) on soymilk fermentation and the neuroprotective effects of fermented soymilk (FS). The addition of FOS did not affect the physicochemical properties during fermentation. It helped that L. plantarum 200655 survive for 21 days of storage at 4 °C. FOS increased the β-glucosidase activity of L. plantarum 200655, total phenolic content, and antioxidant activities, such as radical scavenging and reducing power of FS. In addition, FS with FOS exerted neuroprotective effects in SH-SY5Y cells against H2O2-induced oxidative stress. FS with 3% and 5% FOS (FS3 and FS5) significantly increased cell viability and gene expression of neuronal markers, such as brain-derived neurotrophic factor and tyrosine hydroxylase. Moreover, FS3 and FS5 significantly reduced lactate dehydrogenase release and the gene expression of Bax/Bcl-2 ratio, caspase-9, and caspase-3. These results indicated that FS3 and FS5, with enhanced antioxidant properties, could protect SH-SY5Y cells against H2O2-induced damage. Therefore, soymilk fermented with L. plantarum 200655 and FOS can be used as a prophylactic functional food with neuroprotective effects against oxidative stress.
Collapse
Affiliation(s)
- Ga-Hyun Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Ji Bock
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
8
|
Chae SA, Ramakrishnan SR, Kim T, Kim SR, Bang WY, Jeong CR, Yang J, Kim SJ. Anti-inflammatory and anti-pathogenic potential of Lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. Microb Pathog 2022; 173:105857. [PMID: 36397614 DOI: 10.1016/j.micpath.2022.105857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
9
|
Park JY, Song MW, Kim KT, Paik HD. Improved Antioxidative, Anti-Inflammatory, and Antimelanogenic Effects of Fermented Hydroponic Ginseng with Bacillus Strains. Antioxidants (Basel) 2022; 11:1848. [PMID: 36290570 PMCID: PMC9598918 DOI: 10.3390/antiox11101848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
Compared with traditionally cultured ginseng, hydroponic ginseng (HG) contains more remarkable bioactive compounds, which are known to exert diverse functional effects. This study aimed to enhance the multifunctional effects, including the antioxidative, anti-inflammatory, and antimelanogenic effects, exhibited by fermented HG with Bacillus strains, such as Bacillus subtilis KU43, Bacillus subtilis KU201, Bacillus polyfermenticus SCD, and Bacillus polyfermenticus KU3, at 37 °C for 48 h. After fermentation by B. subtilis KU201, the antioxidant activity, determined using ABTS and FRAP assays, increased from 25.30% to 51.34% and from 132.10% to 236.27%, respectively, accompanied by the enhancement of the phenolic compounds and flavonoids. The inflammation induced in RAW 264.7 cells by lipopolysaccharide (LPS) was ameliorated with fermented HG, which regulated the nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory markers (tumor necrosis factor (TNF)-α, and interleukin (IL)-1β and IL-6). The treatment with fermented HG inhibited the melanin accumulation in B16F10 cells induced by α-melanocyte-stimulating hormone (α-MSH) by controlling the concentrations of melanin synthesis and tyrosinase activity. These results indicate that the HG exhibited stronger antioxidative, anti-inflammatory, and antimelanogenic effects after fermentation. Consequently, HG fermented by Bacillus strains can potentially be used as an ingredient in cosmetological and pharmaceutical applications.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Kee-Tae Kim
- Research Laboratory, WithBio Inc., Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Succession of Bacterial and Fungal Communities during Fermentation of Medicinal Plants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fermentation of medicinal plants has been studied very little, as compared to the fermentation of food and beverages. One approach applies fermentation by single bacterial or fungal strains and targets the production of specific compounds or preservation of the fermented material. Spontaneous fermentation by an autochthonous starter community may lead to a more diverse blend of fermentation products because co-occurring microbes may activate the biosynthetic potentials and formation of compounds not produced in single strain approaches. We applied the community approach and studied the fermentation of four medicinal plants (Achillea millefolium, Taraxacum officinale, Mercurialis perennis, and Euphrasia officinalis), according to a standardized pharmaceutical fermentation method. It is based on the spontaneous fermentation by plant-specific bacterial and fungal communities under a distinct temperature regime, with a recurrent cooling during the first week and further fermentation for at least six months. The results revealed both general and plant-specific patterns in the composition and succession of microbial communities during fermentation. Lactic acid bacteria increasingly dominated in all preparations, whereas the fungal communities retained more plant-specific features. Three distinct fermentation phases with characteristic bacterial communities were identified, i.e., early, middle, and late phases. Co-occurrence network analyses revealed the plant-specific features of the microbial communities.
Collapse
|
11
|
Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Sci Biotechnol 2022; 31:935-956. [PMID: 35873372 PMCID: PMC9300812 DOI: 10.1007/s10068-022-01056-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds in common buckwheat sprouts (CBSs) have gained research interest because of their multiple health benefits. Phenolic acids, flavanones, flavonols, flavan-3-ols, and anthocyanins are important bioactive components of CBS that exhibit biological activities, including anti-inflammatory, antioxidant, anti-proliferative, and immunomodulatory effects. The isolation and quantitative and qualitative analyses of these phenolic compounds require effective and appropriate extraction and analytical methods. The most recent analytical method developed for determining the phenolic profile is HPLC coupled with a UV-visible detector and/or MS. This review highlights the extraction, purification, analysis, and bioactive properties of phenolic compounds from CBS described in the literature.
Collapse
|
12
|
Yu HS, Lee NK, Kim WJ, Lee DU, Kim JH, Paik HD. Optimization of an Industrial Medium and Culture Conditions for Probiotic Weissella cibaria JW15 Biomass Using the Plackett-Burman Design and Response Surface Methodology. J Microbiol Biotechnol 2022; 32:630-637. [PMID: 35354766 PMCID: PMC9628880 DOI: 10.4014/jmb.2202.02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, L-cysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37°C with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.
Collapse
Affiliation(s)
- Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong-Ha Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 Fax: +82-2-455-3082 E-mail:
| |
Collapse
|
13
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
14
|
Immunomodulatory effects of Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124 isolated from kimchi on lipopolysaccharide-induced RAW264.7 cells and dextran sulfate sodium-induced colitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Chung Y, Park JY, Lee JE, Kim KT, Paik HD. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24. Antioxidants (Basel) 2021; 10:1614. [PMID: 34679749 PMCID: PMC8533331 DOI: 10.3390/antiox10101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Panax ginseng Meyer is used as a medicinal plant. The aim of this study was to ferment hydroponic ginseng with Lactococcus lactis KC24 and confirm its antioxidant activity and inhibitory effect on nitric oxide (NO) production. Flavonoid and phenol contents in fermented ginseng extracts were measured. Antioxidant activity was measured by DPPH, ABTS, reducing power, FRAP and β-carotene assays. Additionally, inhibitory effects on NO production and toxicity of the fermented extract were determined using RAW 264.7 cells. Phenol and flavonoid contents increased as the fermentation time increased, and the contents were higher in hydroponic ginseng than in soil-cultivated ginseng. The DPPH assay revealed that the antioxidant activity of the 24 h fermented extract significantly increased from 32.57% to 41% (p < 0.05). The increase in antioxidant activity may be affected by an increase in phenol and flavonoid contents. At 1 mg/mL solid content, the 24 h fermented hydroponic ginseng extract inhibited NO production from 9.87 ± 0.06 μM to 1.62 ± 0.26 μM. In conclusion, the increase in antioxidant activity affects the inhibition of NO production, suggesting that fermented hydroponic ginseng may be used in the industries of functional food and pharmaceutical industry as a functional material with anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.C.); (J.-Y.P.); (J.-E.L.); (K.-T.K.)
| |
Collapse
|
16
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
17
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
18
|
Jung JI, Baek SM, Nguyen TH, Kim JW, Kang CH, Kim S, Imm JY. Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and RANKL-Induced Osteoclastogenesis in RAW 264.7 Macrophages. Molecules 2021; 26:molecules26030733. [PMID: 33572576 PMCID: PMC7867007 DOI: 10.3390/molecules26030733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Postbiotics are a promising functional ingredient that can overcome the limitations of viability and storage stability that challenge the production of probiotics. To evaluate the effects of postbiotics on oral health, eight spent culture supernatants (SCSs) of probiotics were prepared, and the effects of SCSs on Streptococcus mutans-induced cariogenic biofilm formation and the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis were evaluated in RAW 264.7 macrophages. SCS of Lactobacillus salivarius MG4265 reduced S. mutans-induced biofilm formation by 73% and significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity, which is a biomarker of mature osteoclasts in RAW 264.7 macrophages. The suppression of RANKL-induced activation of mitogen activated the protein kinases (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) and nuclear factor κB pathways, as well as the upregulation of heme oxygenase-1 expression. The suppression of RANK-L-induced activation of mitogen also inhibited the expression of transcriptional factors (c-fos and nuclear factor of activated T cells cytoplasmic 1) and, subsequently, osteoclastogenesis-related gene expression (tartrate-resistant acid phosphatase-positive (TRAP), cathepsin K, and matrix metalloproteinase-9).Therefore, SCS of L. salivarius MG4265 has great potential as a multifunctional oral health ingredient that inhibits biofilm formation and suppresses the alveolar bone loss that is associated with periodontitis.
Collapse
Affiliation(s)
- Jae-In Jung
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
| | - Seung-Min Baek
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
| | - Trung Hau Nguyen
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Jin Woo Kim
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Seonyoung Kim
- MEDIOGEN, Co., Ltd., Jecheon 27159, Korea; (T.H.N.); (J.W.K.); (C.-H.K.); (S.K.)
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul 02707, Korea; (J.-I.J.); (S.-M.B.)
- Correspondence: ; Tel.: +82-10-2526-1219
| |
Collapse
|
19
|
Park E, Kim KT, Choi M, Lee Y, Paik HD. In Vivo Evaluation of Immune-Enhancing Activity of Red Gamju Fermented by Probiotic Levilactobacillus brevis KU15154 in Mice. Foods 2021; 10:253. [PMID: 33530528 PMCID: PMC7912586 DOI: 10.3390/foods10020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to evaluate the immune-enhancing effect of red gamju fermented with Levilactobacillus brevis KU15154, isolated from kimchi, as a biofunctional beverage using mice. Thirty-two mice were used, and after a 2-week feeding, the growth, cytokine and immunoglobulin production, and immune-related cell activation (phagocytes and natural killer [NK] cells) of the mice were evaluated. The red gamju- (SR) and fermented red gamju- (FSR) treated groups had 3.5-4.0-fold greater T-cell proliferation ability than the negative control group. IFN-γ production in the FSR group (15.5 ± 1.2 mg/mL) was significantly higher (p < 0.05) than that in the SR group (12.5 ± 1.8 mg/mL). The FSR group (502.6 ± 25.8 μg/mL) also showed higher IgG production levels than the SR group (412.2 ± 44.8 μg/mL). The activity of NK cells treated with FSR was also greater than that of cells treated with SR but it was not significant (p ≤ 0.05). Further, the phagocytic activity of peritoneal macrophages was higher in both SR and FSR groups than in the control group but was not significantly different (p < 0.05) between the SR and FSR groups. In conclusion, L. brevis KU15154 may be applied in the fermentation of bioactive food products, such as beverages or pharmaceutical industries, to potentially improve immunity.
Collapse
Affiliation(s)
- Eunju Park
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| | - Mijoo Choi
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Yunjung Lee
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
20
|
Kariyawasam KMGMM, Lee NK, Paik HD. Fermented dairy products as delivery vehicles of novel probiotic strains isolated from traditional fermented Asian foods. Journal of Food Science and Technology 2020; 58:2467-2478. [PMID: 34194083 DOI: 10.1007/s13197-020-04857-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The screening of novel probiotic strains from various food sources including fruits, vegetables, herbs, and traditional fermented foods, have been of growing concern recently. Most of these potential probiotic lactic acid bacteria isolates were distinguished from the commercial probiotics based on multiple therapeutic effects and functionalities. Recent in vitro and in vivo investigates have also verified the usage of probiotics to lower the risk of diseases. Application of these novel strains in fermented dairy products is also an emerging trend to improve the physical and quality characteristics, functional properties, and safety of dairy products. Moreover, since dairy products are one of the highest consumed products in the globe, the dispatch channels for fermented dairy products are already established. Therefore, incorporating novel probiotic strains into fermented dairy products might be the most feasible approach for their delivery. In this context, our aim is to discuss the feasibility of dairy products as delivery vehicles for novel probiotic strains. Thus, we summarize the scientific evidence that points to a dynamic future for the production of fermented dairy-based probiotics.
Collapse
Affiliation(s)
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
21
|
Yu HS, Kim WJ, Bae WY, Lee NK, Paik HD. Inula britannica Inhibits Adipogenesis of 3T3-L1 Preadipocytes via Modulation of Mitotic Clonal Expansion Involving ERK 1/2 and Akt Signaling Pathways. Nutrients 2020; 12:E3037. [PMID: 33023055 PMCID: PMC7599673 DOI: 10.3390/nu12103037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
The flower of Inula britannica contains various phenolic compounds with prophylactic properties. This study aimed to determine the anti-adipogenic effect of an I. britannica flower aqueous extract (IAE) and its underlying mechanisms in the 3T3-L1 preadipocytes and to identify the phenolic compounds in the extract. Treatment with IAE inhibited the adipogenesis by showing a dose-dependent suppressed intracellular lipid accumulation and mitigated expression levels of lipogenesis- and adipogenesis-associated biomarkers including transcription factors. IAE exerted an anti-adipogenic effect through the modulation of the early phases of adipogenesis including mitotic clonal expansion (MCE). Treatment with IAE inhibited MCE by arresting the cell cycle at the G0/G1 phase and suppressing the activation of MCE-related transcription factors. Furthermore, IAE inhibited adipogenesis by regulating the extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Protocatechuic acid, chlorogenic acid, kaempferol-3-O-glucoside, and 6-methoxyluteolin, which are reported to exhibit anti-adipogenic properties, were detected in IAE. Therefore, modulation of early phases of adipogenesis, especially MCE, is a key mechanism underlying the anti-adipogenic activity of IAE. In summary, the anti-obesity effects of IAE can be attributed to its phenolic compounds, and hence, IAE can be used for the development of anti-obesity products.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.-S.Y.); (W.-J.K.); (W.-Y.B.); (N.-K.L.)
| |
Collapse
|
22
|
Mou L, Wei M, Wu H, Hu L, Li J, Li G. Structure Elucidation of Two New Norlignans from
Anemone vitifolia
and Their Anti‐Inflammatory Activities. Chem Biodivers 2020; 17:e2000184. [DOI: 10.1002/cbdv.202000184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Lin‐Yun Mou
- Department of EcologySchool of Life SciencesNanjing University Nanjing 210046 P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University Nanjing 210023 P. R. China
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Min Wei
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Hai‐Yan Wu
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Li‐Jiao Hu
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Jian‐Long Li
- Department of EcologySchool of Life SciencesNanjing University Nanjing 210046 P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University Nanjing 210023 P. R. China
| | - Gan‐Peng Li
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| |
Collapse
|