1
|
Justine EE, Jang SW, Lee S, Lee HJ, Wang RB, Kim YJ. Comparative anti-inflammatory effect of extract from novel Korean strawberry cultivars (Fragaria × ananassa) on lipopolysaccharide-induced RAW264.7 macrophages and mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2272-2283. [PMID: 37947475 DOI: 10.1002/jsfa.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elsa Easter Justine
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Seo-Woo Jang
- Horticultural Research Institute, Naju-si, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyo-Jun Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Rong-Bo Wang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
2
|
Hyun JH, Yu HS, Woo IK, Lee GW, Lee NK, Paik HD. Anti-inflammatory activities of Levilactobacillus brevis KU15147 in RAW 264.7 cells stimulated with lipopolysaccharide on attenuating NF-κB, AP-1, and MAPK signaling pathways. Food Sci Biotechnol 2023; 32:2105-2115. [PMID: 37860733 PMCID: PMC10581997 DOI: 10.1007/s10068-023-01318-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Probiotics confer many beneficial effects on several illnesses, ranging from microbial diarrhea to inflammatory diseases. This study was conducted on whether Levilactobacillus brevis KU15147 obtained from kimchi has anti-inflammatory effects in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and antioxidant potential. L. brevis KU15147 reduced nitric oxide and prostaglandin E2 levels with decreasing the activation of inducible nitric oxide synthase and cyclooxygenase-2 without cell cytotoxicity. In addition, L. brevis KU15147 attenuated proinflammatory cytokine production including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in RAW 264.7 cells stimulated with LPS. Additionally, L. brevis KU15147 reduced the activity of nuclear factor-κB, activator protein-1, and mitogen-activated protein kinase signaling pathways. Furthermore, L. brevis KU15147 downregulated the production of reactive oxygen species. Therefore, L. brevis KU15147 was concluded that had an inhibition effect on LPS-induced inflammatory responses and can be used in functional foods to suppress inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01318-w.
Collapse
Affiliation(s)
- Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Im-Kyung Woo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gil-Woong Lee
- View of Creativity, GHBio Co., Ltd., 120 Neungdong-Ro, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
3
|
Monmai C, Choi J, Rod-in W, Lee TH, Park WJ. Development of fermented rice cake containing strawberry showing anti-inflammatory effect on LPS-stimulated macrophages and paw edema induced mice. PLoS One 2022; 17:e0276020. [PMID: 36228005 PMCID: PMC9560629 DOI: 10.1371/journal.pone.0276020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Strawberry (Fragaria ananassa) is one of the richest sources containing a wide variety of nutritive compounds. Anti-inflammatory activities of fermented rice cake made of strawberry powder as well as rice powder were evaluated. The fermented rice cake containing strawberry powder (SRC) significantly and dose-dependently inhibited NO production in LPS-stimulated RAW264.7 cells without cytotoxicity. Also, SRC effectively suppressed inflammatory gene expression, including iNOS, COX-2, IL-1β, IL-6, and TNF-α. In addition, the production of PGE2, IL-1β, IL-6, and TNF-α was significantly reduced. Furthermore, the anti-inflammatory effect of SRC was investigated using carrageenan-induced paw edema of ICR mice. It was demonstrated that pre-orally administration of SRC at a dose of 50 and 100 mg/kg BW significantly inhibited paw edema induced by carrageenan. This study suggested that the anti-inflammation activities of strawberry rice cake give the potential for increasing the commercialization of rice cake and rice products.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - JeongUn Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Tae Ho Lee
- Department of Power Plant, Korea Polytechnic College (Mokpo Campus), Muan-gun, Jeollanam-do, Korea
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- * E-mail:
| |
Collapse
|
4
|
Anti-inflammaging effects of black soybean and black rice mixture extract by reprogramming of mitochondrial respirations in murine macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
6
|
Levilactobacillus brevis KU15151 Inhibits Staphylococcus aureus Lipoteichoic Acid-Induced Inflammation in RAW 264.7 Macrophages. Probiotics Antimicrob Proteins 2022; 14:767-777. [PMID: 35554865 DOI: 10.1007/s12602-022-09949-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a host defense response to harmful agents, such as pathogenic invasion, and is necessary for health. Excessive inflammation may result in the development of inflammatory disorders. Levilactobacillus brevis KU15151 has been reported to exhibit probiotic characteristics and antioxidant activities, but the effect of this strain on inflammatory responses has not been determined. The present study aimed to investigate the anti-inflammatory potential of L. brevis KU15151 in Staphylococcus aureus lipoteichoic acid (aLTA)-induced RAW264.7 macrophages. Treatment with L. brevis KU15151 reduced the production of nitric oxide and prostaglandin E2 by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, decreased after treatment with L. brevis KU15151 in aLTA-stimulated RAW 264.7 cells. Furthermore, this strain alleviated the activation of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Moreover, the generation of reactive oxygen species was downregulated by treatment with L. brevis KU15151. These results demonstrate that L. brevis KU15151 possesses an inhibitory effect against aLTA-mediated inflammation and may be employed as a functional probiotic for preventing inflammatory disorders.
Collapse
|
7
|
Methionine strengthens anti-inflammation of rice protein via depressing NF-κB activation and stimulating Msr expression in rats fed cholesterol-enriched diets. Food Sci Biotechnol 2022; 31:745-758. [PMID: 35646410 PMCID: PMC9133292 DOI: 10.1007/s10068-022-01074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is an inducer of inflammation. To elucidate the link of depression of ox-LDL accumulation and anti-inflammatory function of rice protein (RP) whether dependent on methionine availability, growing and adult rats were fed RP and methionine-supplemented RP (RM) under cholesterol-enriched dietary condition. After two weeks feeding, RP and RMs exerted the anti-inflammatory effects through up-regulating IL-10, while RP and RMs significantly reduced ox-LDL levels and effectively suppressed the expressions of inflammatory mediators (COX-2, IL-1β, IL-6, TNF-α, iNOS). The anti-inflammatory molecular mechanism was to inhibit NF-κB activation and to simulate methionine sulfoxide reductase expression. Results showed, under cholesterol-enriched dietary condition, the anti-inflammatory action can be induced by RP and enhanced by methionine in growing and adult rats. The present study reveals a link of the decreased ox-LDL accumulation with the anti-inflammatory function of RP, which is dependent on methionine availability and independent of dietary cholesterol.
Collapse
|