1
|
Shahrivar E, Rahimi E, Khamesipour F. Prevalence, identification of virulence genes, and antibiotic resistance properties of Shiga-toxin producing Escherichia coli (STEC) strains isolated from ice cream and juice in sales centers. BMC Infect Dis 2025; 25:581. [PMID: 40264007 PMCID: PMC12016404 DOI: 10.1186/s12879-025-10971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVE Contaminated food with Shiga-toxin producing Escherichia coli (STEC) can cause diarrhea and severe diseases in consumers. This study aimed to assess the phenotypic and genotypic characteristics of virulence and antibiotic resistance genes in STEC strains isolated from various types of ice cream and fruit juice sold in Isfahan, Iran. METHODS From March 2023 to March 2024, 500 samples-including traditional ice cream (100), industrial ice cream (100), frozen ice cream (100), traditional juice (100), and industrial juice (100)-were collected. Samples were analyzed using biochemical and molecular methods for STEC detection. Antibiotic sensitivity was evaluated using the disc diffusion method against 14 antibiotics. Specific primers were used to identify antibiotic resistance and virulence genes. RESULTS Among the 500 samples, 52 (10.42%) were E. coli positive, with the highest prevalence found in traditional juice (20%) and traditional ice cream (15%). The pathogenic subtype, particularly enterohemorrhagic E. coli (EHEC), was most common in traditional juice (75% of positive samples) and traditional ice cream (66.66%). High antibiotic resistance rates were observed against ampicillin (86.53%), tetracycline (76.92%), and sulfamethoxazole (73.07%), while the lowest resistance was recorded for imipenem (7.69%). The most frequently detected antibiotic resistance genes were aadA1 (76.92%), tetA (57.69%), and sul1 (55.76%). Key virulence genes included stx1, stx2, and eaeA. CONCLUSION These findings emphasize the public health risks associated with STEC contamination in food products and the need for stricter food safety measures and antibiotic stewardship programs. These findings highlight the public health risks of STEC contamination in food products, particularly traditional ice cream and juice. Localized studies are essential to understand specific risks and inform targeted interventions. Strategies such as improved hygiene practices, stringent food safety regulations, and effective antibiotic stewardship programs are critical to mitigating the threat posed by STEC in food products.
Collapse
Affiliation(s)
- Elyas Shahrivar
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Faham Khamesipour
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Roy A, Roy PK, Cho SR, Park SY. Effects of Fucoidan on the Inhibition of Biofilm Formation of Salmonella enterica Subsp. enterica Serovar Typhimurium on Seafoods and Its Molecular Antibiofilm Mechanisms. Microorganisms 2025; 13:914. [PMID: 40284748 PMCID: PMC12029812 DOI: 10.3390/microorganisms13040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Foodborne illnesses, particularly those caused by Salmonella enterica subsp. enterica Serovar Typhimurium, present a significant challenge to public health, especially within the seafood industry due to biofilm formation on foods. This study investigated the antibiofilm potential of fucoidan, a sulfated polysaccharide, against Salmonella enterica subsp. enterica Serovar Typhimurium biofilm on crab and shrimp surfaces. Fucoidan's minimum inhibitory concentration (MIC) was determined to be 150 µg/mL. Sub-MIC (1/8, 1/4, 1/2, and MIC) were evaluated for their impact on inhibition of biofilm formation. Fucoidan treatment resulted in significant, dose-dependent inhibition in biofilm formation, achieving 2.61 log CFU/cm2 and 2.45 log CFU/cm2 reductions on crab and shrimp surfaces, respectively. FE-SEM analysis confirmed biofilm disruption and cell membrane damage. Real-time PCR showed the downregulation of quorum-sensing (luxS) and virulence (rpoS, avrA, and hilA) genes. These results propose that fucoidan has the ability as a natural antibacterial agent for controlling Salmonella enterica subsp. enterica Serovar Typhimurium biofilms in seafood processing, thereby enhancing food safety and minimizing contamination.
Collapse
Affiliation(s)
- Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sung Rae Cho
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea;
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
3
|
Soto Lopez ME, Mendoza-Corvis F, Salgado-Behaine JJ, Hernandez-Arteaga AM, González-Peña V, Burgos-Rivero AM, Cortessi D, Vidigal PMP, Pérez-Sierra O. Phage Endolysins as an Alternative Biocontrol Strategy for Pathogenic and Spoilage Microorganisms in the Food Industry. Viruses 2025; 17:564. [PMID: 40285007 PMCID: PMC12031009 DOI: 10.3390/v17040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Food contamination by pathogenic and spoilage bacteria causes approximately 47 million cases of foodborne diseases in the United States and leads to tons of food spoilage, worsening the food loss situation worldwide. In addition, conventional preservation treatments implemented in the food industry decrease food's nutritional and organoleptic quality. Therefore, there is a need for new alternatives to counteract food contamination without altering its characteristics. Endolysins are a promising strategy due to their unique properties, such as host specificity, synergism with other antibacterial agents, mode of action, and low probability of resistance development. These characteristics differentiate them from other antibacterial agents used in the food industry. Endolysins are enzymes produced by bacteriophages during the process of bacterial infection and lysis. This review describes the advances related to endolysin application systems in food, considering their potential for food safety and an overview of the application conditions according to the type of food and bacteria to be controlled. We also highlight the need for new studies on endolysin encapsulation and prolongation of the action time in cases of outbreaks that allow obtaining key information to improve the application of endolysins in different food matrices during food processing and storage.
Collapse
Affiliation(s)
- Maryoris E. Soto Lopez
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Fernando Mendoza-Corvis
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Jose Jorge Salgado-Behaine
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Ana M. Hernandez-Arteaga
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Víctor González-Peña
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Andrés M. Burgos-Rivero
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| | - Derrick Cortessi
- Animal and Dairy Sciences Department, University of Wisconsin-Madison (UW-Madison), Madison, WI 53706-1205, USA; (D.C.); (P.M.P.V.)
| | - Pedro M. P. Vidigal
- Animal and Dairy Sciences Department, University of Wisconsin-Madison (UW-Madison), Madison, WI 53706-1205, USA; (D.C.); (P.M.P.V.)
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Omar Pérez-Sierra
- Grupo de Investigación en Propiedades y Procesos Alimentarios—GIPPAL, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad de Córdoba, Carrera 6 N° 76-103, Código, Montería 230002, Colombia; (F.M.-C.); (J.J.S.-B.); (A.M.H.-A.); (V.G.-P.); (A.M.B.-R.); (O.P.-S.)
| |
Collapse
|
4
|
Floris I, Battistini R, Tramuta C, Garcia-Vozmediano A, Musolino N, Scardino G, Masotti C, Brusa B, Orusa R, Serracca L, Razzuoli E, Martucci F, Bianchi DM. Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Antibiotics (Basel) 2025; 14:375. [PMID: 40298519 PMCID: PMC12024235 DOI: 10.3390/antibiotics14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.
Collapse
Affiliation(s)
- Irene Floris
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Clara Tramuta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Aitor Garcia-Vozmediano
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Noemi Musolino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
- Azienda Sanitaria Locale di Asti, Via Conte Verde 125, 14100 Asti, Italy
| | - Giulia Scardino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
- Azienda Sanitaria Locale Asl Novara, Viale Roma 7, 28100 Novara, Italy
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Beatrice Brusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Francesca Martucci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| | - Daniela Manila Bianchi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (I.F.); (C.T.); (A.G.-V.); (N.M.); (G.S.); (C.M.); (B.B.); (R.O.); (L.S.); (E.R.); (F.M.); (D.M.B.)
| |
Collapse
|