1
|
Aguirre M, Logarzo G, Triapitsyn S, Diaz-Soltero H, Hight S, Bruzzone OA. Effect of egg production dynamics on the functional response of two parasitoids. PLoS One 2024; 19:e0283916. [PMID: 38457456 PMCID: PMC10923418 DOI: 10.1371/journal.pone.0283916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/12/2024] [Indexed: 03/10/2024] Open
Abstract
Functional response describes the number of hosts attacked by a parasitoid in relation to host densities and plays an important role by connecting behavioral-level processes with community-level processes. Most functional response studies were carried out using simple experimental designs where the insects were confined to a plain and small arena with different host densities during a fixed period of time. With these designs, other factors that might affect the functional response of parasitoids were not analyzed, such as fecundity, age, and experience. We proposed a series of latent-variables Markovian models that comprised an integrated approach of functional response and egg production models to estimate the realized lifetime reproductive success of parasitoids. As a case study, we used the parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate agents for neoclassical biocontrol of the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The tested species were assessed according to their physiology and prior experience. We estimated the number of mature eggs after emergence, egg production on the first day, egg production rate, the proportion of eggs resorbed, egg resorption threshold, and egg storage capacity. Anagyrus cachamai and A. lapachosus both presented a type III functional response. However, the two parasitoids behaved differently; for A. cachamai, the number of parasitized hosts decreased with female age and depended on the number of mature eggs that were available for oviposition, whereas A. lapachosus host parasitism increased with female age and was modulated by its daily egg load and previous experience. The methodology presented may have large applicability in pest control, invasive species management, and conservation biology, as it has the potential to increase our understanding of the reproductive biology of a wide variety of species, ultimately leading to improved management strategies.
Collapse
Affiliation(s)
- María Aguirre
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Guillermo Logarzo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Serguei Triapitsyn
- Department of Entomology, University of California, Riverside, California, United States of America
| | | | - Stephen Hight
- USDA-ARS-CMAVE at Center for Biological Control, Florida A&M University, Tallahassee, Florida, United States of America
| | - Octavio Augusto Bruzzone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
2
|
Kishani Farahani H, Moghadassi Y, Pierre JS, Kraus S, Lihoreau M. Poor adult nutrition impairs learning and memory in a parasitoid wasp. Sci Rep 2021; 11:16220. [PMID: 34376777 PMCID: PMC8355316 DOI: 10.1038/s41598-021-95664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Animals have evolved cognitive abilities whose impairment can incur dramatic fitness costs. While malnutrition is known to impact brain development and cognitive functions in vertebrates, little is known in insects whose small brain appears particularly vulnerable to environmental stressors. Here, we investigated the influence of diet quality on learning and memory in the parasitoid wasp Venturia canescens. Newly emerged adults were exposed for 24 h to either honey, 20% sucrose solution, 10% sucrose solution, or water, before being conditioned in an olfactory associative learning task in which an odor was associated to a host larvae (reward). Honey fed wasps showed 3.5 times higher learning performances and 1.5 times longer memory retention than wasps fed sucrose solutions or water. Poor diets also reduced longevity and fecundity. Our results demonstrate the importance of early adult nutrition for optimal cognitive function in these parasitoid wasps that must quickly develop long-term olfactory memories for searching suitable hosts for their progeny.
Collapse
Affiliation(s)
| | - Yasaman Moghadassi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karajs, Iran
| | - Jean-Sebastien Pierre
- Rennes 1, UMR-CNRS 6553 EcoBio, University of, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Stéphane Kraus
- Research Center On Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UMR 5169 CNRS, University of Toulouse III, Toulouse, France
| | - Mathieu Lihoreau
- Research Center On Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UMR 5169 CNRS, University of Toulouse III, Toulouse, France.
| |
Collapse
|
3
|
Kishani Farahani H, Moghadassi Y, Alford L, van Baaren J. Effect of interference and exploitative competition on associative learning by a parasitoid wasp: a mechanism for ideal free distribution? Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Dalesman S. Habitat and social context affect memory phenotype, exploration and covariance among these traits. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170291. [PMID: 30104436 PMCID: PMC6107572 DOI: 10.1098/rstb.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Individual differences in cognitive ability are predicted to covary with other behavioural traits such as exploration and boldness. Selection within different habitats may act to either enhance or break down covariance among traits; alternatively, changing the environmental context in which traits are assessed may result in plasticity that alters trait covariance. Pond snails, Lymnaea stagnalis, from two laboratory strains (more than 20 generations in captivity) and F1 laboratory reared from six wild populations were tested for long-term memory and exploration traits (speed and thigmotaxis) following maintenance in grouped and isolated conditions to determine if isolation: (i) alters memory and exploration; and (ii) alters covariance between memory and exploration. Populations that demonstrated strong memory formation (longer duration) under grouped conditions demonstrated weaker memory formation and reduced both speed and thigmotaxis following isolation. In wild populations, snails showed no relationship between memory and exploration in grouped conditions; however, following isolation, exploration behaviour was negatively correlated with memory, i.e. slow-explorers showing low levels of thigmotaxis formed stronger memories. Laboratory strains demonstrated no covariance among exploration traits and memory independent of context. Together these data demonstrate that the relationship between cognition and exploration traits can depend on both habitat and context-specific trait plasticity.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Sarah Dalesman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| |
Collapse
|
5
|
Amat I, van Alphen JJ, Kacelnik A, Desouhant E, Bernstein C. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis. PeerJ 2017; 5:e3699. [PMID: 28924495 PMCID: PMC5600175 DOI: 10.7717/peerj.3699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive output. METHODS We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen's d value; Cohen, 1988). RESULTS Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. DISCUSSION Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.
Collapse
Affiliation(s)
- Isabelle Amat
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | | | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Desouhant
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | - Carlos Bernstein
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| |
Collapse
|
6
|
Kishani Farahani H, Ashouri A, Goldansaz SH, Shapiro MS, Pierre JS, van Baaren J. Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia? INSECT SCIENCE 2017; 24:569-583. [PMID: 27090067 DOI: 10.1111/1744-7917.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Several factors, such as cold exposure, aging, the number of experiences and viral infection, have been shown to affect learning ability in different organisms. Wolbachia has been found worldwide as an arthropod parasite/mutualist symbiont in a wide range of species, including insects. Differing effects have been identified on physiology and behavior by Wolbachia. However, the effect of Wolbachia infection on the learning ability of their host had never previously been studied. The current study carried out to compare learning ability and memory duration in 2 strains of the parasitoid Trichogramma brassicae: 1 uninfected and 1 infected by Wolbachia. Both strains were able to associate the novel odors with the reward of an oviposition into a host egg. However, the percentage of females that responded to the experimental design and displayed an ability to learn in these conditions was higher in the uninfected strain. Memory duration was longer in uninfected wasps (23.8 and 21.4 h after conditioning with peppermint and lemon, respectively) than in infected wasps (18.9 and 16.2 h after conditioning with peppermint and lemon, respectively). Memory retention increased in response to the number of conditioning sessions in both strains, but memory retention was always shorter in the infected wasps than in the uninfected ones. Wolbachia infection may select for reduced memory retention because shorter memory induces infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments, thus increasing transmission of Wolbachia in new environments.
Collapse
Affiliation(s)
- Hossein Kishani Farahani
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin S Shapiro
- Department of Psychology, California State University, Fresno, USA
| | - Jean-Sebastien Pierre
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Joan van Baaren
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| |
Collapse
|
7
|
Froissart L, Giurfa M, Sauzet S, Desouhant E. Cognitive adaptation in asexual and sexual wasps living in contrasted environments. PLoS One 2017; 12:e0177581. [PMID: 28498866 PMCID: PMC5428991 DOI: 10.1371/journal.pone.0177581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 12/01/2022] Open
Abstract
Differences in learning and memory dynamics between populations are suspected to result from differences in ecological constraints such as resource distribution. The two reproductive modes (strains) of the parasitoid wasp Venturia canescens share the same geographical areas but live in contrasting habitats: arrhenotokous wasps live in the wild (generally orchards), whereas thelytokous ones live mostly in stored-products buildings (e.g. granaries). This species thus represents a relevant biological model for understanding the relationship between the ecological constraints faced by a species and its memory and learning ability. We showed that after having laid eggs in presence of both a synthetic odour and natural olfactory cues of their host, arrhenotokous wasps exhibited a change in their behavioural response towards the synthetic odour that was at least as pronounced as in thelytokous ones even though they were faster in their decision-making process. This is consistent with better learning skills in arrhenotokous wasps. The corresponding memory trace persisted in both strains for at least 51 h. We compare and discuss the learning and memory ablities of both strains as a function of their costs and benefits in their preferential habitats.
Collapse
Affiliation(s)
- Lucie Froissart
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
- Institut Universitaire de Technologie Lyon 2, Université Lumière Lyon 2, Université de Lyon, Bron, France
- * E-mail: (LF); (ED)
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Sandrine Sauzet
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
| | - Emmanuel Desouhant
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
- * E-mail: (LF); (ED)
| |
Collapse
|
8
|
Smid HM, Vet LE. The complexity of learning, memory and neural processes in an evolutionary ecological context. CURRENT OPINION IN INSECT SCIENCE 2016; 15:61-69. [PMID: 27436733 DOI: 10.1016/j.cois.2016.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
The ability to learn and form memories is widespread among insects, but there exists considerable natural variation between species and populations in these traits. Variation manifests itself in the way information is stored in different memory forms. This review focuses on ecological factors such as environmental information, spatial aspects of foraging behavior and resource distribution that drive the evolution of this natural variation and discusses the role of different genes and neural networks. We conclude that at the level of individual, population or species, insect learning and memory cannot be described as good or bad. Rather, we argue that insects evolve tailor-made learning and memory types; they gate learned information into memories with high or low persistence. This way, they are prepared to learn and form memory to optimally deal with the specific ecologies of their foraging environments.
Collapse
Affiliation(s)
- Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Louise Em Vet
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| |
Collapse
|
9
|
Intraspecific variability in associative learning in the parasitic wasp Nasonia vitripennis. Anim Cogn 2014; 18:593-604. [PMID: 25523189 DOI: 10.1007/s10071-014-0828-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
The ability to learn is key to behavioral adaptation to changing environments. Yet, learning rate and memory retention can vary greatly across or even within species. While interspecific differences have been attributed to ecological context or life history constraints, intraspecific variability in learning behavior is rarely studied and more often, ignored: inferences of the cognitive abilities of a species are most of the time made from experiments using individuals of a single population. Here, we show that learning of host-associated cues in the parasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) shows considerable interpopulation variability, which is at least partly, genetically determined. The strengths of the learning response differed predictably between populations and also varied with the rewarding stimulus. We tested memory retention in a genetically diverse strain and in an iso-female line, bearing a low genetic variability. In addition, we compared our findings with published studies on a third strain using a meta-analytical approach. Our findings suggest that all three strains differ in memory formation from each other. We conclude that, even though the associative learning of host cues is most likely under strong natural selection in parasitoid wasps, considerable genetic variability is maintained at the population as well as at the species level in N. vitripennis.
Collapse
|
10
|
Zrelec V, Zini M, Guarino S, Mermoud J, Oppliger J, Valtat A, Zeender V, Kawecki TJ. Drosophila rely on learning while foraging under semi-natural conditions. Ecol Evol 2013; 3:4139-48. [PMID: 24324865 PMCID: PMC3853559 DOI: 10.1002/ece3.783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
Learning is predicted to affect manifold ecological and evolutionary processes, but the extent to which animals rely on learning in nature remains poorly known, especially for short-lived non-social invertebrates. This is in particular the case for Drosophila, a favourite laboratory system to study molecular mechanisms of learning. Here we tested whether Drosophila melanogaster use learned information to choose food while free-flying in a large greenhouse emulating the natural environment. In a series of experiments flies were first given an opportunity to learn which of two food odours was associated with good versus unpalatable taste; subsequently, their preference for the two odours was assessed with olfactory traps set up in the greenhouse. Flies that had experienced palatable apple-flavoured food and unpalatable orange-flavoured food were more likely to be attracted to the odour of apple than flies with the opposite experience. This was true both when the flies first learned in the laboratory and were then released and recaptured in the greenhouse, and when the learning occurred under free-flying conditions in the greenhouse. Furthermore, flies retained the memory of their experience while exploring the greenhouse overnight in the absence of focal odours, pointing to the involvement of consolidated memory. These results support the notion that even small, short lived insects which are not central-place foragers make use of learned cues in their natural environments.
Collapse
Affiliation(s)
- Vukašin Zrelec
- Department of Ecology and Evolution, University of Lausanne Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|