1
|
Zhong X, Huang X, Zhu C, Wang Y, Chapman CA, Garber PA, Chen Y, Fan P. Science-based suggestions to save the world's rarest primate species Nomascus hainanus. SCIENCE ADVANCES 2025; 11:eadv4828. [PMID: 40215308 PMCID: PMC11988426 DOI: 10.1126/sciadv.adv4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Conservation practices for extremely small populations must be grounded in solid science to prevent extinction. Hainan gibbon (Nomascus hainanus) is the world's rarest primate species; however, insufficient data on its habitat suitability and genetic status impede evidence-based decisions for habitat restoration. Here, we conducted a comprehensive analysis of Hainan gibbons' energy intake and expenditure, reproductive parameters, and genetic diversity based on field research (March 2021 to December 2022) and long-term historical data (2003 to 2024). By comparing our results with those of captive gibbons and other free-feeding captive primates, we found that Hainan gibbons can obtain sufficient energy for growth and reproduction in their existing habitats. Furthermore, we identified an additional D-loop haplotype indicating that the current population is more genetically diverse than previously thought. However, recently formed adult male-female pairs are increasingly related, signaling a high risk for inbreeding within this small population. Based on these findings, we highlight an urgent need to expand available habitat by building corridors.
Collapse
Affiliation(s)
- Xukai Zhong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xia Huang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Changyue Zhu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuxin Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, V9R 5S5, Canada
- Wilson Center,1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710127, China
| | - Paul A. Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Yuan Chen
- School of Ecology, Hainan University, Haikou 570228, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Cheng S, Li BW, Garber PA, Xia DP, Li JH. Wild Tibetan Macaques Use a Route-Based Mental Map to Navigate in Large-Scale Space. Am J Primatol 2025; 87:e23720. [PMID: 39726120 DOI: 10.1002/ajp.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Many animals face significant challenges in locating and acquiring resources that are unevenly distributed in space and time. In the case of nonhuman primates, it remains unclear how individuals remember goal locations and whether they navigate using a route-based or a coordinate-based mental representation when moving between out-of-sight feeding and resting sites (i.e., large-scale space). Here, we examine spatial memory and mental map formation in wild Tibetan macaques (Macaca thibetana) inhabiting a mountainous, forested ecosystem characterized by steep terrain that limits direct vision to 25 meters. We used an instantaneous scan sampling technique at 10-min intervals to record the behavior and location of macaques on Mt. Huangshan, Anhui Province, China, from September 2020 to August 2023. Over 214 days, we obtained 7180 GPS points of the macaques' locations. Our study revealed that the macaques reused 1264 route segments (average length 204.26 m) at least four times each. The number of feeding and resting sites around the habitual route segment, terrain roughness, and dense vegetation areas significantly influenced the use of route segments by our study group. In addition, we found evidence that the monkeys reused 48 nodes to reorient their travel path. We found that monkeys approached a revisited foraging or resting site from the same limited set of directions, which is inconsistent with a coordinate-based spatial representation. In addition, the direction in which the macaques left a feeding or resting site was significantly different from the straight-line direction required to reach their next feeding or resting site, suggesting that the macaques frequently reoriented their direction of travel to reach their goal. Finally, on average, macaques traveled 24% (CI = 1.24) farther than the straight-line distance to reach revisited feeding and resting sites. From our robust data set, we conclude that Tibetan macaques navigate large spaces using a route-based mental representation that appears to help them locate food resources in dense, rugged montane forests and heterogeneous habitats.
Collapse
Affiliation(s)
- Shi Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
| | - Bo-Wen Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Civil Engineering and Water Conservancy, Bengbu University, Bengbu, Anhui, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- International Center for Biodiversity and Primates Conservation, Dali University, Dali, Yunnan, China
| | - Dong-Po Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jin-Hua Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
3
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
4
|
Fei H, de Guinea M, Yang L, Garber PA, Zhang L, Chapman CA, Fan P. Wild gibbons plan their travel pattern according to food types of breakfast. Proc Biol Sci 2023; 290:20230430. [PMID: 37192666 PMCID: PMC10188241 DOI: 10.1098/rspb.2023.0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Planning for the future is a complex skill that is often considered uniquely human. This cognitive ability has never been investigated in wild gibbons (Hylobatidae). Here we evaluated the movement patterns from sleeping trees to out-of-sight breakfast trees in two groups of endangered skywalker gibbons (Hoolock tianxing). These Asian apes inhabit a cold seasonal montane forest in southwestern China. After controlling for possible confounding variables including group size, sleeping pattern (sleep alone or huddle together), rainfall and temperature, we found that food type (fruits or leaves) of the breakfast tree was the most important factor affecting gibbon movement patterns. Fruit breakfast trees were more distant from sleeping trees compared with leaf trees. Gibbons left sleeping trees and arrived at breakfast trees earlier when they fed on fruits compared with leaves. They travelled fast when breakfast trees were located further away from the sleeping trees. Our study suggests that gibbons had foraging goals in mind and plan their departure times accordingly. This ability may reflect a capacity for route-planning, which would enable them to effectively exploit highly dispersed fruit resources in high-altitude montane forests.
Collapse
Affiliation(s)
- Hanlan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- College of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
| | - Miguel de Guinea
- Movement Ecology Lab, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Paul A. Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, People's Republic of China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada V9R 5S5
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, People's Republic of China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
5
|
Li BW, Li WB, Xia DP, Zhang T, Yang PP, Li JH. Sleeping sites provide new insight into multiple central place foraging strategies of Tibetan macaques (Macaca thibetana). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1067923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Food resources, including food types, quantity, and quality, are the key factors that determine the survival and reproduction of wild animals. However, the most basic requirement is access to food. The choice of sleeping sites plays a crucial role in efficiently acquiring food and provides a useful starting point for studying foraging strategies. We collected data on sleeping site and foraging patch uses of wild Tibetan macaques (Macaca thibetana) in Huangshan, Anhui, China, from September 2020 to August 2021. We found that Tibetan macaques used 50 different sleeping sites, mostly located on cliffs, some of which they reused. Sleeping site altitude differed significantly according to season, with higher altitudes recorded in summer and winter. Tibetan macaques did not sleep as much as expected in the peripheral regions of their home range. The sleeping sites were often distributed in proximity to foraging patches, and there was a positive correlation between the use of sleeping sites and surrounding foraging patches. The utilization of foraging patches by Tibetan macaques is inclined towards the multiple central place foraging strategy. Our results provide supportive evidence for the proximity to food resource hypothesis and indicate the important role of sleeping sites in food resource utilization in Tibetan macaques.
Collapse
|
6
|
Watkins B, de Guinea M, Poindexter SA, Ganzhorn JU, Donati G, Eppley TM. Routes matter: the effect of seasonality on bamboo lemur navigational strategies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|