1
|
Hu Z, Li Z, Shi Y, Liu S, Shen Y, Hu F, Li Q, Liu X, Gou X, Chen Z, Yang D. Advancements in investigating the role of cerebral small vein loss in Alzheimer's disease-related pathological changes. Neurol Sci 2024; 45:1875-1883. [PMID: 38133856 DOI: 10.1007/s10072-023-07208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Alzheimer's disease (AD) is the prevailing type of dementia in the elderly, yet a comprehensive comprehension of its precise underlying mechanisms remains elusive. The investigation of the involvement of cerebral small veins in the advancement of AD has yet to be sufficiently explored in previous studies, primarily due to constraints associated with pathological staining techniques. However, recent research has provided valuable insights into multiple pathophysiological occurrences concerning cerebral small veins in AD, which may manifest sequentially, concurrently, or in a self-perpetuating manner. These events are presumed to be among the initial processes in the disease's progression. The impact of cerebral small vein loss on amyloid beta (Aβ) clearance through the glial lymphatic system is noteworthy. There exists a potential interdependence between collagen deposition and Aβ deposition in cerebral small veins. The compromised functionality of cerebral small veins can result in decreased cerebral perfusion pressure, potentially leading to cerebral tissue ischemia and edema. Additionally, the reduction of cerebral small veins may facilitate the infiltration of inflammatory factors into the brain parenchyma, thereby eliciting neuroinflammatory responses. Susceptibility-weighted imaging (SWI) is a valuable modality for the efficient assessment of cerebral small veins, precisely the deep medullary vein (DMV), and holds promise for the identification of precise and reliable imaging biomarkers for AD. This review presents a comprehensive overview of the current advancements and obstacles to the impairment of cerebral small veins in AD. Additionally, we emphasize future research avenues and the importance of conducting further investigations in this domain.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Zhaoying Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yu Shi
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Shanyu Liu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yuling Shen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Fangfang Hu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Qingqing Li
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xu Liu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xinyu Gou
- Department of Neurology, Guang'an People's Hospital, Guang'an, 638001, China
| | - Zhenwei Chen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| |
Collapse
|
2
|
The puzzle of preserved cognition in the oldest old. Neurol Sci 2019; 41:441-447. [PMID: 31713754 DOI: 10.1007/s10072-019-04111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Although epidemiological studies predict an exponential increase in the prevalence of dementia with age, recent studies have demonstrated that the oldest old are actually less frequently affected by dementia than the younger elderly. To explain this, I suggest a parallel between brain ageing and Alzheimer's disease (AD) and assume that theories concerning the brain's vulnerability to AD and its individual variability may also explain why some of the oldest old remain cognitively efficient. Some theories argue that AD is due to the continuing presence of the immature neurones vulnerable to amyloid beta protein (Aß) that are normally involved in brain development and then removed as a result of cell selection by the proteins associated with both brain development and AD. If a dysfunction in cell selection allows these immature neurones to survive, they degenerate early as a result of the neurotoxic action of Aß accumulation, which their mature counterparts can withstand. Consequently, age at the time of onset of AD and its clinical presentations depend on the number and location of such immature cells. I speculate that the same mechanism is responsible for the variability of normal brain ageing: the oldest old with well-preserved cognitive function are people genetically programmed for extreme ageing who have benefited from better cell selection during prenatal and neonatal life and therefore have fewer surviving neurones vulnerable to amyloid-promoted degeneration, whereas the process of early life cell selection was less successful in the oldest old who develop dementia.
Collapse
|
3
|
Zheng JY, Wang HF, Wan Y, Tan MS, Tan CC, Tan L, Zhang W, Zheng ZJ, Kong LL, Wang ZX, Tan L, Yu JT. Associations of rs3740677 within GAB2 Gene with LOAD in Chinese Han Population. Mol Neurobiol 2016; 54:4015-4020. [PMID: 27311772 DOI: 10.1007/s12035-016-9953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
GRB2-associated binding protein 2 (GAB2) has been identified as a crucial factor in Alzheimer's disease (AD), and ten common variants within GAB2 have been detected to be associated with AD onset risk in genome-wide association studies (GWAS). Here, we first screened a common locus (rs3740677) in 3' UTR of GAB2 sequence which is targeted by the miRNA-185 and initiatively explored the probable associations of rs3740677 with risk for late-onset AD (LOAD) in a large scale case-control study from Chinese Han populations (992 LOAD patients and 1358 healthy subjects). Eventually, the genotype (P = 0.024) and allele (P = 0.008) distribution of rs3740677 showed significant difference between LOAD and control group, and we observed a significant association of T allele in rs3740677 with LOAD risk in multivariate analysis and it decreased the risk for LOAD (dominant: OR = 0.831, 95 % CI = 0.702-0.983, P = 0.031; additive: OR = 0.855, 95 % CI = 0.745-0.983, P = 0.027) adjusted for age, gender, and APOE ε4 status. Our study further confirmed the association of GAB2 and AD. However, the absolute and correct association of rs3740677 with AD still required more investigations in diverse regions and ethnics.
Collapse
Affiliation(s)
- Jing-Yu Zheng
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, China
| | - Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China. .,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China. .,Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, Suite 190, Box 1207, San Francisco, CA, 94158, USA.
| |
Collapse
|
4
|
Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases-an Overview of Experimental Studies. Curr Top Behav Neurosci 2015; 29:231-264. [PMID: 26695168 DOI: 10.1007/7854_2015_416] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origin of health and disease hypothesis states that adverse fetal and early childhood exposures can predispose to obesity, cardiovascular, and neurodegenerative diseases (NDDs) in adult life. Early exposure to environmental chemicals interferes with developmental programming and induces subclinical alterations that may hesitate in pathophysiology and behavioral deficits at a later life stage. The mechanisms by which perinatal insults lead to altered programming and to disease later in life are still undefined. The long latency between exposure and onset of disease, the difficulty of reconstructing early exposures, and the wealth of factors which the individual is exposed to during the life course make extremely difficult to prove the developmental origin of NDDs in clinical and epidemiological studies. An overview of animal studies assessing the long-term effects of perinatal exposure to different chemicals (heavy metals and pesticides) supports the link between exposure and hallmarks of neurodegeneration at the adult stage. Furthermore, models of maternal immune activation show that brain inflammation in early life may enhance adult vulnerability to environmental toxins, thus supporting the multiple hit hypothesis for NDDs' etiology. The study of prospective animal cohorts may help to unraveling the complex pathophysiology of sporadic NDDs. In vivo models could be a powerful tool to clarify the mechanisms through which different kinds of insults predispose to cell loss in the adult age, to establish a cause-effect relationship between "omic" signatures and disease/dysfunction later in life, and to identify peripheral biomarkers of exposure, effects, and susceptibility, for translation to prospective epidemiological studies.
Collapse
|
5
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
6
|
Jana AK, Sengupta N. Adsorption mechanism and collapse propensities of the full-length, monomeric Aβ(1-42) on the surface of a single-walled carbon nanotube: a molecular dynamics simulation study. Biophys J 2012; 102:1889-96. [PMID: 22768945 DOI: 10.1016/j.bpj.2012.03.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 03/02/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Though nanomaterials such as carbon nanotubes have gained recent attention in biology and medicine, there are few studies at the single-molecule level that explore their interactions with disease-causing proteins. Using atomistic molecular-dynamics simulations, we have investigated the interactions of the monomeric Aβ(1-42) peptide with a single-walled carbon nanotube of small diameter. Starting with peptide-nanotube complexes that delineate the interactions of different segments of the peptide, we find rapid convergence in the peptide's adsorption behavior on the nanotube surface, manifested in its arrested movement, the convergence of peptide-nanotube contact areas and approach distances, and in increased peptide wrapping around the nanotube. In systems where the N-terminal domain is initially distal from nanotube, the adsorption phenomena are initiated by interactions arising from the central hydrophobic core, and precipitated by those arising from the N-terminal residues. Our simulations and free energy calculations together demonstrate that the presence of the nanotube increases the energetic favorability of the open state. We note that the observation of peptide localization could be leveraged for site-specific drug delivery, while the decreased propensity of collapse appears promising for altering kinetics of the peptide's self-assembly.
Collapse
Affiliation(s)
- Asis K Jana
- Physical Chemistry Division, National Chemical Laboratory, Pune, India
| | | |
Collapse
|