1
|
Functional Magnetic Resonance Imaging of Brain Function and Emergence Agitation of Patients with Dexmedetomidine-Assisted General Anesthesia under Comfortable Nursing Intervention. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8527568. [PMID: 35936982 PMCID: PMC9347218 DOI: 10.1155/2022/8527568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
Abstract
In order to explore the effects of dexmedetomidine (DEX) on functional magnetic resonance imaging (fMRI) and emergence agitation of patients who underwent general anesthesia surgery with sevoflurane under comfortable nursing intervention, 66 patients who received upper abdominal surgery were selected as research objects. According to nursing and anesthesia methods, the patients were randomly divided into control group (routine nursing and anesthesia), group A (routine nursing and DEX-assisted anesthesia), and group B (comfortable nursing and DEX-assisted anesthesia). The differences in the brain fMRI characteristics, hemodynamic indexes, anesthesia recovery indexes, and nursing satisfaction in the perioperative period were evaluated. The results showed that the regional homogeneity values were different in different brain regions, but there was no difference in the Z value of functional connectivity(P > 0.05). Compared with the control group, heart rate, mean arterial pressure, awakening time, extubation time, the Riker sedation-agitation scale (SAS) score, and anesthetic dosage were signally decreased in group A and group B, while the Ramsay scores, the postanesthesia care unit (PACU) stay, and anesthesia maintenance time in the two groups was obviously increased(P < 0.05). Compared with group A, the extubation time, the SAS score, PACU stay, and hospital stay were all remarkably reduced in group B, while the nursing satisfaction score was greatly increased(P < 0.05). To sum up, DEX was helpful to safely and effectively reduce the occurrence of emergence agitation in patients under general anesthesia surgery with sevoflurane. Besides, comfortable nursing intervention could further reduce the incidence of emergence agitation in patients with general anesthesia, shorten the length of hospital stay, and improve nursing satisfaction.
Collapse
|
2
|
The Patent Foramen Ovale and Migraine: Associated Mechanisms and Perspectives from MRI Evidence. Brain Sci 2022; 12:brainsci12070941. [PMID: 35884747 PMCID: PMC9313384 DOI: 10.3390/brainsci12070941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Migraine is a common neurological disease with a still-unclear etiology and pathogenesis. Patent foramen ovale (PFO) is a kind of congenital heart disease that leads to a right-to-left shunt (RLS). Although previous studies have shown that PFO has an effect on migraine, a clear conclusion about the link between PFO and migraine is lacking. We first summarized the PFO potential mechanisms associated with migraine, including microembolus-triggered cortical spreading depression (CSD), the vasoactive substance hypothesis, impaired cerebral autoregulation (CA), and a common genetic basis. Further, we analyzed the changes in brain structure and function in migraine patients and migraine patients with PFO. We found that in migraine patients with PFO, the presence of PFO may affect the structure of the cerebral cortex and the integrity of white matter, which is mainly locked in subcortical, deep white matter, and posterior circulation, and may lead to changes in brain function, such as cerebellum and colliculus, which are involved in the processing and transmission of pain. In summary, this paper provides neuroimaging evidence and new insights into the correlation between PFO and migraine, which will help to clarify the etiology and pathogenesis of migraine, and aid in the diagnosis and treatment of migraine in the future.
Collapse
|
3
|
A Narrative Review of Neuroimaging Studies in Acupuncture for Migraine. Pain Res Manag 2021; 2021:9460695. [PMID: 34804268 PMCID: PMC8598357 DOI: 10.1155/2021/9460695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
Acupuncture has been widely used as an alternative and complementary therapy for migraine. With the development of neuroimaging techniques, the central mechanism of acupuncture for migraine has gained increasing attention. This review aimed to analyze the study design and main findings of neuroimaging studies of acupuncture for migraine to provide the reference for future research. The original studies were collected and screened in three English databases (PubMed, Embase, and Cochrane Library) and four Chinese databases (Chinese National Knowledge Infrastructure, Chinese Biomedical Literature database, the Chongqing VIP database, and Wanfang database). As a result, a total of 28 articles were included. Functional magnetic resonance imaging was the most used neuroimaging technique to explore the cerebral activities of acupuncture for migraine. This review manifested that acupuncture could elicit cerebral responses on patients with migraine, different from sham acupuncture. The results indicated that the pain systems, including the medial pain pathway, lateral pain pathway, and descending pain modulatory system, participated in the modulation of the cerebral activities of migraine by acupuncture.
Collapse
|
4
|
Tian Z, Guo Y, Yin T, Xiao Q, Ha G, Chen J, Wang S, Lan L, Zeng F. Acupuncture Modulation Effect on Pain Processing Patterns in Patients With Migraine Without Aura. Front Neurosci 2021; 15:729218. [PMID: 34512254 PMCID: PMC8427167 DOI: 10.3389/fnins.2021.729218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction In this retrospective study, resting-state functional connectivity (FC) in patients with migraine was analyzed to identify potential pathological pain processing patterns and compared them to those in healthy controls (HCs). The FC patterns in patients between pre- and post-acupuncture sessions were also analyzed to determine how acupuncture affects neurological activity and pain perception during the migraine interictal period. Methods In total, 52 patients with migraine without aura (MwoA) and 60 HCs were recruited. Patients with migraine were given acupuncture treatment sessions for 4 weeks. As a primary observation, functional magnetic resonance images were obtained at the beginning and end of the sessions. HCs received no treatment and underwent one functional magnetic resonance imaging (fMRI) scan after enrollment. After the fMRI data were preprocessed, a region of interest (ROI)-to-ROI analysis was performed with predefined ROIs related to pain processing regions. Results The first analysis showed significantly different FCs between patients with MwoA and HCs [false discovery rate corrected p-value (p-FDR) < 0.05]. The FCs were found to be mainly between the cingulate gyrus (CG) and the insular gyrus, the CG and the inferior parietal lobule (IPL), the CG and the superior frontal gyrus, and the middle frontal gyrus and the IPL. The second analysis indicated that acupuncture treatment partly restored the different FCs found in the first analysis (p-FDR < 0.05). Furthermore, subgroup analysis found different brain activity patterns in headache-intensity restored condition and headache-frequency restored condition. Lastly, the correlation analysis suggested a potential correlation between FCs and clinical symptoms (p < 0.05). Conclusion This study suggests that pain processing is abnormal in migraine, with significantly abnormal FCs in the frontal, parietal, and limbic regions. This finding could be a typical pathological feature of migraine. Acupuncture has been identified to relieve headache symptoms in two ways: it restores the pain processing function and regulates pain perception.
Collapse
Affiliation(s)
- Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Xiao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Ha
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo Wang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| |
Collapse
|
5
|
Liu L, Tian T, Li X, Wang Y, Xu T, Ni X, Li X, He Z, Gao S, Sun M, Liang F, Zhao L. Revealing the Neural Mechanism Underlying the Effects of Acupuncture on Migraine: A Systematic Review. Front Neurosci 2021; 15:674852. [PMID: 34093119 PMCID: PMC8172773 DOI: 10.3389/fnins.2021.674852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Migraine is a chronic neurological disorder characterized by attacks of moderate or severe headache and various neurological symptoms. Migraine is typically treated by pharmacological or non-pharmacological therapies to relieve pain or prevent migraine attacks. Pharmacological therapies show limited efficacy in relieving headache and are often accompanied by adverse effects, while the benefits of acupuncture, a non-pharmacological therapy, have been well-documented in both the treatment and prevention of acute migraine attacks. However, the underlying mechanism of the effect of acupuncture on relieving migraine remains unclear. Recent advances in neuroimaging technology have offered new opportunities to explore the underlying neural mechanism of acupuncture in treating migraine. To pave the way for future research, this review provides an overview neuroimaging studies on the use of acupuncture for migraine in the last 10 years. Methods: Using search terms about acupuncture, neuroimaging and migraine, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure from January 2009 to June 2020 for neuroimaging studies that examined the effect of acupuncture in migraine. All published randomized and non-randomized controlled neuroimaging studies were included. We summarized the proposed neural mechanism underlying acupuncture analgesia in acute migraine, and the proposed neural mechanism underlying the sustained effect of acupuncture in migraine prophylaxis. Results: A total of 619 articles were retrieved. After removing reviews, meta-analyses, animal studies and etc., 15 articles were eligible and included in this review. The methods used were positron emission computed tomography (PET-CT; n = 2 studies), magnetic resonance spectroscopy (n = 1), and functional magnetic resonance imaging (fMRI; n = 12). The analyses used included the regional homogeneity (ReHo) method (n = 3), amplitude of low frequency (ALFF) method (n = 2), independent component analysis (ICA; n = 3), seed-based analysis (SBA; n = 1), both ICA and SBA (n = 1), Pearson's correlation to calculate functional connectivity (FC) between brain regions (n = 1), and a machine learning method (n = 1). Five studies focused on the instant effect of acupuncture, and the research objects were those with acute migraine (n = 2) and migraine in the interictal phase (n = 3). Ten studies focused on the lasting effect of acupuncture, and all the studies selected migraine patients in the interictal phase. This review included five task-based studies and 10 resting-state studies. None of the studies conducted a correlation analysis between functional brain changes and instant clinical efficacy. For studies that performed a correlation analysis between functional brain changes and sustained clinical efficacy, the prophylactic effect of acupuncture on migraine might be through regulation of the visual network, default mode network (DMN), sensory motor network, frontoparietal network (FPN), limbic system, and/or descending pain modulatory system (DPMS). Conclusion: The neural mechanism underlying the immediate effect of acupuncture analgesia remains unclear, and the neural mechanism of sustained acupuncture treatment for migraine might be related to the regulation of pain-related brain networks. The experimental design of neuroimaging studies that examined the effect of acupuncture in migraine also have some shortcomings, and it is necessary to standardize and optimize the experimental design. Multi-center neuroimaging studies are needed to provide a better insight into the neural mechanism underlying the effect of acupuncture on migraine. Multi-modality neuroimaging studies that integrate multiple data analysis methods are required for cross-validation of the neuroimaging results. In addition, applying machine learning methods in neuroimaging studies can help to predict acupuncture efficacy and screen for migraineurs for whom acupuncture treatment would be suitable.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxi He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Tian Z, Yin T, Xiao Q, Dong X, Yang Y, Wang M, Ha G, Chen J, Liang F, Zeng F, Lan L. The Altered Functional Connectivity With Pain Features Integration and Interaction in Migraine Without Aura. Front Neurosci 2021; 15:646538. [PMID: 33746709 PMCID: PMC7969893 DOI: 10.3389/fnins.2021.646538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Migraine without aura (MwoA) is a primary type of migraine, a common disabling disorder, and a disabling neurological condition. The headache is a complex experience, a common form of pain, in which multiple sensory information dimensions are combined to provide a unified conscious event. Migraine ictal have unique neuroimage biomarkers, but the brain is also affected during the inter-ictal phase. According to the current studies, a hypothesis was constructed that the altered integration of pain spatial and intensity information impacts headache intensity in the inter-ictal period. Methods In this study, we applied theory-based region-to-region functional connectivity (FC) analyses to compare the differences in resting-state FC between MwoA participants and healthy controls with the pain integration hypothesis. After the correlation matrices between FC edges and clinical symptoms were constructed, the moderating effect and simple slope tests were investigated to explain whether and how the dysfunction of pain features discrimination affects the clinical symptoms. Results Functional connectivity analyses showed significantly decreased FC edges between the left dorsolateral superior frontal gyrus (SFGdor) and left insula, and an increased FC edge between the left SFGdor and bilateral angular gyrus. The correlation matrix showed no significant correlation between significantly altered FC edge and headache duration, frequency, Zung self-rating anxiety scale, and Zung self-rating depression scale. Only one significantly altered edge in the MwoA condition was significantly correlated with headache intensity. Moderating Module 1 and 2 manifested the moderator variable (altered rs-FC edge) moderated the link between the normal edges and headache intensity. Conclusion The pain features integration processes in migraineurs vary from HCs, related to the clinical symptoms during a migraine attack. Moreover, the clinical symptoms will be affected by one or more discrimination modules. And the spatial or intensity discrimination modules have a higher impact when combined with another module on clinical symptoms than the single module.
Collapse
Affiliation(s)
- Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Xiao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhong Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Menglin Wang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Ha
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
8
|
Lovati C, Giani L, Mele F, Sinelli A, Tien TT, Preziosa G, Mariani C. Brain plasticity and migraine transformation: fMRI evidences. Expert Rev Neurother 2016; 16:1413-1425. [PMID: 27388277 DOI: 10.1080/14737175.2016.1208565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Chronification transforms episodic migraine into the pathologic chronic form. Biological characteristics of the migrainous brain progressively change, in predisposed subjects, under the repetition of external and internal stimuli. Modifications involve neurons, synapses, neurotransmitters, receptors, connectivity and pain control. f-MRI is a promising way to explore the still unclear biology of this progression. Areas covered: Data included were obtained from the most relevant and updated works available on PubMed about this topic. We summarized the pathophysiology of migraine chronification and of brain plasticity, and we described the different fMRI techniques and their main evidences about migraine transformation. Expert commentary: Functional-MRI has revealed many aspects regarding the peculiarity of the migrainous brain and its tendency toward chronicity but a series of questions are still open: What are the hallmarks of the predisposition to chronification? Which elements are the cause and which the consequence of this process?
Collapse
Affiliation(s)
- Carlo Lovati
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Luca Giani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Francesco Mele
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | | | | | - Giulia Preziosa
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | - Claudio Mariani
- a Neurology Unit, Luigi Sacco Hospital , University of Milan , Milan , Italy
| |
Collapse
|
9
|
Guerriero RM, Rivkin MJ. Reversible vasoconstriction syndrome involving the basilar artery in an adolescent: imaging and clinical features. Pediatr Neurol 2015; 52:635-7. [PMID: 25891819 DOI: 10.1016/j.pediatrneurol.2015.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/22/2023]
Abstract
IMPORTANCE Reversible cerebral vasoconstriction syndrome is characterized by recurrent episodes of "thunderclap headache" and by transient, multifocal vasoconstriction of cerebral vasculature. Here we present an adolescent boy whose clinical features fit the diagnostic criteria and whose neurovascular imaging revealed reversible vasoconstriction of the basilar artery alone. OBSERVATION A previously healthy 14-year-old boy presented with repeated severe sudden thunderclap headaches following exercise. These symptoms were accompanied by isolated basilar artery stenosis. CONCLUSION Reversible cerebral vasoconstriction syndrome is a condition with several clinical triggers. Its pathophysiology is poorly understood. This patient adds to a broadening spectrum of clinical features of this disorder.
Collapse
Affiliation(s)
- Réjean M Guerriero
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael J Rivkin
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Kollndorfer K, Kowalczyk K, Frasnelli J, Hoche E, Unger E, Mueller CA, Krajnik J, Trattnig S, Schöpf V. Same same but different. Different trigeminal chemoreceptors share the same central pathway. PLoS One 2015; 10:e0121091. [PMID: 25775237 PMCID: PMC4361644 DOI: 10.1371/journal.pone.0121091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intranasal trigeminal sensations are important in everyday life of human beings, as they play a governing role in protecting the airways from harm. Trigeminal sensations arise from the binding of a ligand to various sub-types of transient receptor potential (TRP) channels located on mucosal branches of the trigeminal nerve. Which underlying neural networks are involved in the processing of various trigeminal inputs is still unknown. To target this unresolved question fourteen healthy human subjects were investigated by completing three functional magnetic resonance imaging (fMRI) scanning sessions during which three trigeminal substances, activating varying sub-types of chemoreceptors and evoking different sensations in the nose were presented: CO2, menthol and cinnamaldehyde. We identified similar functional networks responding to all stimuli: an olfactory network, a somatosensory network and an integrative network. The processing pathway of all three stimulants was represented by the same functional networks, although CO2 evokes painful but virtually odorless sensations, and the two other stimulants, menthol and cinnamaldehyde are perceived as mostly non painful with a clear olfactory percept. Therefore, our results suggest a common central processing pathway for trigeminal information regardless of the trigeminal chemoreceptor and sensation type.
Collapse
Affiliation(s)
- Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ksenia Kowalczyk
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes Frasnelli
- Centre de Recherche en Neuropsychologie et Cognition, Département de Psychologie, Université de Montréal, Montréal, Canada
- Centre de Recherche, Hôpital du Sacre Coeur de Montréal, Montréal, Canada
| | - Elisabeth Hoche
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christian A. Mueller
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Jacqueline Krajnik
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Veronika Schöpf
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Schwedt TJ, Chong CD, Chiang CC, Baxter L, Schlaggar BL, Dodick DW. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 2014; 34:947-58. [PMID: 24627432 DOI: 10.1177/0333102414526069] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to identify brain regions having aberrant pain-induced activation in migraineurs, thereby gaining insight into particular aspects of pain processing that are atypical in migraineurs. METHODS Functional magnetic resonance imaging assessed whole brain responses to painful heat in 24 adult episodic migraineurs who were at least 48 hours pain free and 27 healthy controls. Regions differentially activated in migraineurs compared to controls were identified. Activation intensities in these regions were correlated with headache frequency, number of migraine years, and time to next migraine attack. RESULTS Migraineurs had greater pain-induced activation of lentiform nucleus, fusiform gyrus, subthalamic nucleus, hippocampus, middle cingulate cortex, premotor cortex, somatosensory cortex, and dorsolateral prefrontal cortex, and less activation in precentral gyrus and superior temporal gyrus. There were significant correlations between activation strength and headache frequency for middle cingulate (r = 0.627, p = 0.001), right dorsolateral prefrontal cortex (r = 0.568, p = 0.004), left fusiform gyrus (r = 0.487, p = 0.016), left precentral gyrus (r = 0.415, p = 0.044), and left hippocampus (r = 0.404, p = 0.050) and with number of migraine years for left fusiform gyrus (r = 0.425, p = 0.038). There were no significant correlations between activation strength and time to next migraine attack. CONCLUSIONS The majority of regions with enhanced pain-induced activation in headache-free migraineurs participate in cognitive aspects of pain perception such as attending to pain and pain memory. Enhanced cognitive pain processing by migraineurs might reflect cerebral hypersensitivity related to high expectations and hypervigilance for pain.
Collapse
|