1
|
Street D, Bevan-Jones WR, Malpetti M, Jones PS, Passamonti L, Ghosh BC, Rittman T, Coyle-Gilchrist IT, Allinson K, Dawson CE, Rowe JB. Structural correlates of survival in progressive supranuclear palsy. Parkinsonism Relat Disord 2023; 116:105866. [PMID: 37804622 PMCID: PMC7615224 DOI: 10.1016/j.parkreldis.2023.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/12/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Many studies of the Richardson's syndrome phenotype of progressive supranuclear palsy (PSP) have elucidated regions of progressive atrophy and neural correlates of clinical severity. However, the neural correlates of survival and how these differ according to variant phenotypes are poorly understood. We set out to identify structural changes that predict severity and survival from scanning date to death. METHODS Structural magnetic resonance imaging data from 112 deceased people with clinically defined 'probable' or 'possible' PSP were analysed. Neuroanatomical regions of interest volumes, thickness and area were correlated with 'temporal stage', defined as the ratio of time from symptom onset to death, time from scan to death ('survival from scan'), and in a subset of patients, clinical severity, adjusting for age and total intracranial volume. Forty-nine participants had post mortem confirmation of the diagnosis. RESULTS Using T1-weighted magnetic resonance imaging, we confirmed the midbrain, and bilateral cortical structural correlates of contemporary disease severity. Atrophy of the striatum, cerebellum and frontotemporal cortex correlate with temporal stage and survival from scan, even after adjusting for severity. Subcortical structure-survival relationships were stronger in Richardson's syndrome than variant phenotypes. CONCLUSIONS Although the duration of PSP varies widely between people, an individual's progress from disease onset to death (their temporal stage) reflects atrophy in striatal, cerebellar and frontotemporal cortical regions. Our findings suggest magnetic resonance imaging may contribute to prognostication and stratification of patients with heterogenous clinical trajectories and clarify the processes that confer mortality risk in PSP.
Collapse
Affiliation(s)
- Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | | | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Consiglio Nazionale Delle Ricerche (CNR), Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milano, Italy
| | - Boyd Cp Ghosh
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Wessex Neurological Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Ian Ts Coyle-Gilchrist
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Norfolk and Norwich NHS Foundation Trust, Norwich, UK
| | - Kieren Allinson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Catherine E Dawson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Phonemic fluency quantity and quality: Comparing patients with PSP, Parkinson's disease and focal frontal and subcortical lesions. Neuropsychologia 2021; 153:107772. [PMID: 33549583 DOI: 10.1016/j.neuropsychologia.2021.107772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
Progressive supranuclear palsy (PSP) can be difficult to distinguish from Parkinson's disease (PD), but has a much graver prognosis. PSP is characterised severely reduced output on measures of phonemic fluency, suggesting that it may be a specific marker of PSP. However, reduced phonemic fluency has also been noted in PD, and very few studies have actually compared phonemic fluency in PSP and PD. Although anecdotal reports suggest that phonemic fluency output in PSP may have specific characteristics, with more low-frequency words and perseverative errors, no study to date has formally explored this. Further investigation into phonemic fluency output and its cognitive and neuroanatomical correlates is now critical for improving our understanding of the verbal fluency in PSP. In this study, we compared phonemic fluency characteristics (including quantity, frequency and error rates) in patients with PSP, PD and focal frontal or subcortical lesions, and age- and education-matched healthy controls. We then compared these characteristics with performance on extensive neuropsychological testing. We found that PSP patients generated significantly fewer words than patients with PD and patients with right frontal focal lesions, and healthy controls. Phonemic fluency was also significantly reduced in patients with left frontal and subcortical focal lesions. However, there were no significant group differences in word frequency or error rates. Phonemic fluency was best predicted by performance on the Vocabulary and Hayling neuropsychological tests. We argue that these findings provide important evidence that reduced phonemic fluency is a hallmark of PSP and argue that the specificity of this impairment betrays an underlying impairment in energization, reflecting dysfunction of left frontal and subcortical networks.
Collapse
|
3
|
Endo H, Shimada H, Sahara N, Ono M, Koga S, Kitamura S, Niwa F, Hirano S, Kimura Y, Ichise M, Shinotoh H, Zhang MR, Kuwabara S, Dickson DW, Toda T, Suhara T, Higuchi M. In vivo binding of a tau imaging probe, [ 11 C]PBB3, in patients with progressive supranuclear palsy. Mov Disord 2019; 34:744-754. [PMID: 30892739 PMCID: PMC6593859 DOI: 10.1002/mds.27643] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background [11C]pyridinyl‐butadienyl‐benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. Objectives To explore the usefulness of [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. Methods We assessed 13 PSP patients and 13 age‐matched healthy control subjects. Individuals negative for amyloid β PET with [11C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET. Results There were significant differences in binding potential for [11C]pyridinyl‐butadienyl‐benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11C]pyridinyl‐butadienyl‐benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11C]pyridinyl‐butadienyl‐benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl‐butadienyl‐benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. Conclusions Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11C]pyridinyl‐butadienyl‐benzothiazole 3/PET potentially provides a neuroimaging‐based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hironobu Endo
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Fumitoshi Niwa
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeki Hirano
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan.,Neurology Chiba Clinic, Chiba, Japan
| | - Ming Rong Zhang
- Department of Radiopharmaceuticals Development, Clinical Research Cluster, NIRS, QST, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsushi Toda
- Department of Neurology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research (DOFI), Clinical Research Cluster, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| |
Collapse
|
4
|
Albrecht F, Bisenius S, Neumann J, Whitwell J, Schroeter ML. Atrophy in midbrain & cerebral/cerebellar pedunculi is characteristic for progressive supranuclear palsy - A double-validation whole-brain meta-analysis. NEUROIMAGE-CLINICAL 2019; 22:101722. [PMID: 30831462 PMCID: PMC6402426 DOI: 10.1016/j.nicl.2019.101722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Progressive supranuclear palsy (PSP) is an atypical parkinsonian syndrome characterized by vertical gaze palsy and postural instability. Midbrain atrophy is suggested as a hallmark, but it has not been validated systematically in whole-brain imaging. METHODS We conducted whole-brain meta-analyses identifying disease-related atrophy in structural MRI. Eighteen studies were identified (N = 315 PSP, 393 controls) and separated into gray or white matter analyses (15/12). All patients were diagnosed according to the National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP criteria, Litvan et al. (1996a)), which are now considered as PSP-Richardson syndrome (Höglinger et al., 2017). With overlay analyses, we double-validated two meta-analytical algorithms: anatomical likelihood estimation and seed-based D mapping. Additionally, we conducted region-of-interest effect size meta-analyses on radiological biomarkers and subtraction analyses differentiating PSP from Parkinson's disease. RESULTS Whole brain meta-analyses revealed consistent gray matter atrophy in bilateral thalamus, anterior insulae, midbrain, and left caudate nucleus. White matter alterations were consistently detected in bilateral superior/middle cerebellar pedunculi, cerebral pedunculi, and midbrain atrophy. Region-of-interest meta-analyses demonstrated that midbrain metrics generally perform very well in distinguishing PSP from other parkinsonian syndromes with strong effect sizes. Subtraction analyses identified the midbrain as differentiating between PSP and Parkinson's disease. CONCLUSIONS Our meta-analyses identify gray matter atrophy of the midbrain and white matter atrophy of the cerebral/cerebellar pedunculi and midbrain as characteristic for PSP. Results support the incorporation of structural MRI data, and particularly these structures, into the revised PSP diagnostic criteria.
Collapse
Affiliation(s)
- Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.
| | - Sandrine Bisenius
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany; Department of Medical Engineering and Biotechnology, University of Applied Science, Jena, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Germany.
| | | | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany; Clinic of Cognitive Neurology, University of Leipzig & FTLD Consortium Germany, Germany.
| |
Collapse
|
5
|
Han Q, Yang J, Xiong H, Shang H. Voxel-based meta-analysis of gray and white matter volume abnormalities in spinocerebellar ataxia type 2. Brain Behav 2018; 8:e01099. [PMID: 30125476 PMCID: PMC6160648 DOI: 10.1002/brb3.1099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To identify the consistent findings from the whole-brain voxel-based morphometry (VBM) studies on spinocerebellar ataxia type 2 (SCA2). METHODS The whole-brain VBM studies comparing SCA2 patients and healthy controls (HCs) were systematically searched in PubMed, Embase databases from January 2000 to June 2017. The coordinates with significant differences in gray matter (GM) and white matter (WM) between SCA2 patients and HCs were extracted separately from each cluster. A meta-analysis was performed using anisotropic effect size-based signed differential mapping (AES-SDM) software. RESULTS A total of five studies with 65 SCA2 patients and 124 HCs were included in the GM meta-analysis. Four of the five studies with 50 SCA2 patients and 109 HCs were included in the WM meta-analysis. Significant and consistent GM volume reductions were detected in bilateral cerebellar hemispheres, cerebellar vermis, the right fusiform gyrus, the right parahippocampal gyrus, and the right lingual gyrus. The WM volume reductions were observed in bilateral cerebellar hemispheres, cerebellar vermis, middle cerebellar peduncles, pons, and bilateral cortico-spinal projections. The findings of the study remained largely unchanged in jackknife sensitivity analysis. CONCLUSIONS The consistent findings from our meta-analysis showed that GM volume reductions in SCA2 patients were not limited in cerebellum while significant WM volume reductions widely existed in cerebellum and pyramidal system. The findings provide morphological basis for further studies on SCA2.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Xiong
- Department of Geriatrics, The Fourth Affiliated Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Sakurai K, Tokumaru AM, Shimoji K, Murayama S, Kanemaru K, Morimoto S, Aiba I, Nakagawa M, Ozawa Y, Shimohira M, Matsukawa N, Hashizume Y, Shibamoto Y. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy. Neuroradiology 2017; 59:431-443. [DOI: 10.1007/s00234-017-1812-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/19/2017] [Indexed: 01/29/2023]
|
7
|
GOTO M, SUZUKI M, MIZUKAMI S, ABE O, AOKI S, MIYATI T, FUKUDA M, GOMI T, TAKEDA T. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T 1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner. Magn Reson Med Sci 2016; 15:365-370. [PMID: 26841856 PMCID: PMC5608110 DOI: 10.2463/mrms.mp.2015-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/18/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). MATERIALS AND METHODS Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T1-weighted images (3D-T1WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. RESULTS The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. CONCLUSION We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.
Collapse
Affiliation(s)
- Masami GOTO
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Makoto SUZUKI
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Graduate School of Medical Sciences, Kitasato University
| | - Shinya MIZUKAMI
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Osamu ABE
- Department of Radiology, Nihon University School of Medicine
| | | | | | - Michinari FUKUDA
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Graduate School of Medical Sciences, Kitasato University
| | - Tsutomu GOMI
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Tohoru TAKEDA
- School of Allied Health Sciences, Kitasato University, 1-15-1 Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
8
|
Holtbernd F, Eidelberg D. The utility of neuroimaging in the differential diagnosis of parkinsonian syndromes. Semin Neurol 2014; 34:202-9. [PMID: 24963679 DOI: 10.1055/s-0034-1381733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The differential diagnosis of parkinsonian syndromes can be challenging, particularly in early disease stages. However, prognosis and therapeutic regimes are not alike in Parkinson disease and atypical parkinsonism, and thus a correct diagnosis at the earliest possible stage is desirable. Over the past two decades, magnetic resonance imaging and radiotracer-based imaging techniques have proven to be helpful tools to enhance the accuracy of clinical diagnosis in these disorders. Here, we review recent advances in neuroimaging for the differential diagnosis of parkinsonian syndromes.
Collapse
Affiliation(s)
- Florian Holtbernd
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York
| |
Collapse
|