1
|
Hayes LH, Perdomini M, Aykanat A, Genetti CA, Paterson HL, Cowling BS, Freitag C, Beggs AH. Phenotypic Spectrum of DNM2-Related Centronuclear Myopathy. Neurol Genet 2022; 8:e200027. [PMID: 36324371 PMCID: PMC9621335 DOI: 10.1212/nxg.0000000000200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Background and Objectives Centronuclear myopathy (CNM) due to mutations in the dynamin 2 gene, DNM2, is a rare neuromuscular disease about which little is known. The objective of this study was to describe the range of clinical presentations and subsequent natural history of DNM2-related CNM. Methods Pediatric and adult patients with suspicion for a CNM diagnosis and confirmed heterozygous pathogenic variants in DNM2 were ascertained between December 8, 2000, and May 1, 2019. Data were collected through a retrospective review of genetic testing results, clinical records, and pathology slides combined with patient-reported clinical findings via questionnaires. Results Forty-two patients with DNM2-related CNM, whose ages ranged from 0.95 to 75.76 years at most recent contact, were enrolled from 34 families in North or South America and Europe. There were 8 different DNM2 pathogenic variants within the cohort. Of the 32 biopsied patients, all had histologic features of CNM. The disease onset was in infancy or childhood in 81% of the cohort, and more than half of the patients had high arched palates, indicative of weakness in utero. Ambulation was affected in nearly all (92%) the patients, and while the rapidity of progression was variable, most (67%) reported a "deteriorating course." Ptosis, ophthalmoparesis, facial weakness, dysphagia, and respiratory insufficiency were commonly reported. One-third of the patients experienced restricted jaw mobility. Certain pathogenic variants appear to correlate with a more severe phenotype. Discussion DNM2-related CNM has a predominantly early-onset, often congenital, myopathy resulting in progressive difficulty with ambulation and occasionally bulbar and respiratory dysfunction. This detailed characterization of the phenotype provides important information to support clinical trial readiness for future disease-modifying therapies.
Collapse
Affiliation(s)
- Leslie Hotchkiss Hayes
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Morgane Perdomini
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Asli Aykanat
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Casie A Genetti
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Heather L Paterson
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Belinda S Cowling
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Christian Freitag
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| | - Alan H Beggs
- Division of Genetics and Genomics (L.H.H., A.A., C.A.G., H.L.P., A.H.B.), the Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School; Department of Neurology (L.H.H., A.A.), Boston Children's Hospital; and Dynacure (M.P., B.S.C., C.F.), Illkirch, France
| |
Collapse
|
2
|
Wang Q, Yu M, Xie Z, Liu J, Wang Q, Lv H, Zhang W, Yuan Y, Wang Z. Mutational and clinical spectrum of centronuclear myopathy in 9 cases and a literature review of Chinese patients. Neurol Sci 2021; 43:2803-2811. [PMID: 34595679 DOI: 10.1007/s10072-021-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022]
Abstract
Centronuclear myopathy (CNM) is a group of congenital myopathies with the histopathological findings of centralized nuclei in muscle fibres. In this study, we summarized the mutational spectrum and phenotypic features of nine Chinese patients with CNM and reanalysed the existing data on 32 CNM patients reported in China. In a cohort comprising nine patients, 14 variants were found in three CNM-related genes, including DNM2, RYR1, and TTN, in 4, 3, and 2 patients, respectively. Of the total 14 variants identified, nine were reported, and 5 were novel including one pathogenic, one likely pathogenic, and 3 of undetermined significance (VUS). Pathologically, we identified the percentage of muscle fibres with central nuclei was much higher in the DNM2-related CNM patients than that in other genetic type of CNM. Of the 32 genetic-diagnosed CNM patients previously reported from China, DNM2, MTM1, SPEG, RYR1, and MYH7 mutations accounted for 59.4%, 25.0%, 9.4%, 3.1%, and 3.1%, respectively. Notably, all of the 20 variants of DNM2 were missense mutations, and the missense mutations in exon 8 were found in 60.0% of DNM2 variants. The c.1106G > A/ p.R369Q (NM_001005360) occurred in 26.3% patients of this Chinese cohort with DNM2-CNM. In conclusion, CNM showed a highly variable genetic spectrum, with DNM2 as the most common causative gene in Chinese CNM patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.
| |
Collapse
|
3
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
4
|
Zhao Y, Zhao Z, Shen H, Bing Q, Hu J. Characterization and genetic diagnosis of centronuclear myopathies in seven Chinese patients. Neurol Sci 2018; 39:2043-2051. [PMID: 30232666 DOI: 10.1007/s10072-018-3534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/09/2018] [Indexed: 11/24/2022]
Abstract
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. Here, we report a cohort of seven CNM patients with their clinical, histological, and morphological features. In addition, using the next-generation sequencing (NGS) technique (5/7 patients), we identified small indels: intronic, exonic, and missense mutations in MTM1, DNM2, and RYR1 genes. Further genetic studies revealed skewed X-chromosome inactivation in two female patients carrying MTM1 mutations. Based on the results of genetic analysis, these seven patients were classified as (1) X-linked recessive myotubular myopathy (patients 1-3) with MTM1 mutations and mild phenotype, (2) the autosomal dominant CNM (patients 4-6) with DNM2 mutations, and (3) the autosomal recessive CNM (patient 7) with RYR1 mutations. In all patients, histological findings featured a high proportion of fibers with central nuclei. Radial arrangement of the sarcoplasmic strands was observed in DNM2-CNM and RYR1-CNM patients. Muscle magnetic resonance imaging (MRI) revealed a proximal pattern of involvement presented in both MTM1-CNM and RYR1-CNM patients. A distal pattern of involvement was present in DNM2-CNM patients. Our findings thereby identified a number of novel features that expand the reported clinicopathological phenotype of CNMs in China.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Zhe Zhao
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Hongrui Shen
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qi Bing
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Jing Hu
- Department of Neuromuscular Disorder, Third Hospital of Hebei Medical University, 139# Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Rinnenthal JL, Dittmayer C, Irlbacher K, Wacker I, Schröder R, Goebel HH, Butori C, Villa L, Sacconi S, Stenzel W. New variant of necklace fibres display peculiar lysosomal structures and mitophagy. Neuromuscul Disord 2018; 28:846-856. [PMID: 30149909 DOI: 10.1016/j.nmd.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Here, we describe a new variant of necklace fibres with specific myopathological features that have not been described thus far. They were observed in two patients, from two independent families with identical DNM2 (dynamin 2) mutation (c.1106 G > A (p.Arg369Gln)), displaying mildly heterogeneous clinical phenotypes. The variant is characterized by lysosomal inclusions, arranged in a necklace pattern, containing homogenous material, devoid of myonuclei. The so-called necklace region has a certain characteristic distance to the sarcolemma. Electron microscopy, including three dimensional reconstructions of serial section images highlights their ultrastructural properties and relation to neighbouring organelles. This new pattern is compared to the previously reported patterns in muscle biopsies containing necklace fibres associated with MTM1- and DNM2-mutations.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- Department of Pathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Irene Wacker
- Cryo EM, CAM, Universität Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Rasmus Schröder
- Cryo EM, BioQuant, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Catherine Butori
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Luisa Villa
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, CHU Nice, 30, Avenue de la Voie Romaine, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
6
|
MYH7 mutation associated with two phenotypes of myopathy. Neurol Sci 2017; 39:333-339. [PMID: 29170849 DOI: 10.1007/s10072-017-3192-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
The mutations of MYH7 (slow skeletal/β-cardiac myosin heavy chain) are commonly found in familial hypertrophic/dilated cardiomyopathy, and also can cause Laing early-onset distal myopathy (LDM), myosin storage myopathy (MSM), and congenital myopathy with fiber-type disproportion (CFTD). Here we report two cases whose diagnosis was hereditary myopathy according to clinical feature and muscle pathology analysis. High-throughput genomic sequencing (next generation sequencing) was performed to validate the diagnosis. Two MYH7 mutations, p.R1845W and p.E1687del, were identified. p.R1845W was found in a male patient showing weakness of both terminal lower legs without foot drop. Muscle pathology stainings characteristically showed the hyaline body in the intracytoplasmic location. The novel mutation p.E1687del was found in a family with seven patients. The proband showed foot drop, scoliosis, and winged scapula, while his mother only showed mild foot drop and winged scapula. Muscle pathology analysis showed congenital centronucleus myopathy. Both cases only showed muscular disorder and had no cardiomyopathy. This study, for the first time, reports the MYH7 mutations associated with centronucleus myopathy.
Collapse
|