1
|
Manusha S, Varsha N, Varshini R, Sivamani Y, Pokkuluri KS, Elayaperumal S. Altered microbiome influence on the enteric neuromuscular system in amyotrophic lateral sclerosis (ALS). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:95-123. [PMID: 40414644 DOI: 10.1016/bs.irn.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurological disease marked by the degeneration of motor neurons, leading to muscle weakness and paralysis. While the cause of ALS is uncertain, research indicates that changes in the gut microbiome may influence the disease's progression. This chapter explores how alterations in gut microbiota affect the enteric neuromuscular system (ENS) in ALS. In ALS patients, disrupted gut microbiota are linked to the brain-gut axis, impacting both gastrointestinal function and neuronal health. Studies show that microbial changes are associated with inflammation, immune instability, and neurodegeneration, which exacerbate the disease. Gastrointestinal issues like constipation and dysphagia in ALS are tied to ENS dysregulation. Understanding the connections between the gut microbiome, ENS, and central nervous system (CNS) may lead to novel therapies targeting neurodegeneration and microbial dysbiosis in ALS.
Collapse
Affiliation(s)
- Sadari Manusha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - N Varsha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - R Varshini
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Yuvaraj Sivamani
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India; Crescent School of Pharmacy, B.S.Abdur Rahman Crescent Institute of Science & Technology, Peerakankaranai, Tamilnadu, India
| | - Kiran Sree Pokkuluri
- Department of Computer Science and Engineering, Shri Vishnu Engineering College for Women, Bhimavaram, India
| | - Sumitha Elayaperumal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.
| |
Collapse
|
2
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Moțățăianu A, Mănescu IB, Șerban G, Bărcuțean L, Ion V, Bălașa R, Andone S. Exploring the Role of Metabolic Hormones in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:5059. [PMID: 38791099 PMCID: PMC11121721 DOI: 10.3390/ijms25105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.
Collapse
Affiliation(s)
- Anca Moțățăianu
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Laura Bărcuțean
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Valentin Ion
- Faculty of Pharmacy, Department of Analytical Chemistry and Drug Analysis, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- Drug Testing Laboratory, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Rodica Bălașa
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Sebastian Andone
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| |
Collapse
|
4
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
6
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Tefera TW, Steyn FJ, Ngo ST, Borges K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target? Cell Biosci 2021; 11:14. [PMID: 33431046 PMCID: PMC7798275 DOI: 10.1186/s13578-020-00511-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Tesfaye Wolde Tefera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Yamashita T, Hatakeyama T, Sato K, Fukui Y, Hishikawa N, Takemoto M, Ohta Y, Nishiyama Y, Kawai N, Tamiya T, Abe K. Hypoxic stress visualized in the cervical spinal cord of ALS patients. Neurol Res 2020; 43:429-433. [PMID: 33377424 DOI: 10.1080/01616412.2020.1866383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease. Hypoxic stress is suspected as the pathogenesis of ALS, however, no positron emission tomography (PET) study for hypoxic stress has been conducted in the spinal cord of ALS patients.Methods: In the present study, we examined cervical spinal hypoxic stress of nineALS patients with upper extremity (U/E) atrophy by18F-fluoromisonidazole (FMISO) PET.Results: On the ipsilateral side of C1 and C5 levels, 18F-FMISO uptake increased significantly compared with the contralateral side (*p < 0.05) and the control subject (**p < 0.01). In addition, a strong correlation was found between 18F-FMISO uptake of the C5 level and the rate of progression of the ALS FRS-R score (R = 0.781, *p = 0.013).Conclusion: These results indicate that hypoxic stress increased in the spinal cord of ALS patients with a close link to ALS progression. Both hypoxic stress and a compromised response to hypoxia, which may lead to subsequent motor neuron death, could be a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Nobuyuki Kawai
- Department of Neurological Surgery, KagawaGeneralRehabilitationHospital, Kagawa, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
10
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
|
12
|
Kirk SE, Tracey TJ, Steyn FJ, Ngo ST. Biomarkers of Metabolism in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:191. [PMID: 30936848 PMCID: PMC6431787 DOI: 10.3389/fneur.2019.00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the deterioration of motor neurons. However, this complex disease extends beyond the boundaries of the central nervous system, with metabolic alterations being observed at the systemic and cellular level. While the number of studies that assess the role and impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism biomarkers in ALS remains largely underinvestigated. In this review, we discuss current and potential metabolism biomarkers in the context of ALS. Of those for which data does exist, there is limited insight provided by individual markers, with specificity for disease, and lack of reproducibility and efficacy in informing prognosis being the largest drawbacks. However, given the array of metabolic markers available, the potential exists for a panel of metabolism biomarkers, which may complement other current biomarkers (including neurophysiology, imaging, as well as CSF, blood and urine markers) to overturn these limitations and give rise to new diagnostic and prognostic indicators.
Collapse
Affiliation(s)
- Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Chew S, Atassi N. Positron Emission Tomography Molecular Imaging Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:135. [PMID: 30881332 PMCID: PMC6405430 DOI: 10.3389/fneur.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited treatment options. Despite decades of therapeutic development, only two modestly efficacious disease-modifying drugs-riluzole and edaravone-are available to ALS patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure drug pharmacodynamics are needed to accelerate therapeutic development for patients with ALS. Positron emission tomography (PET) imaging has promise as a biomarker for ALS because it permits visualization of central nervous system (CNS) pathology in individuals living with ALS. The availability of PET radioligands that target a variety of potential pathophysiological mechanisms-including cerebral metabolism, neuroinflammation, neuronal dysfunction, and oxidative stress-has enabled dynamic interrogation of molecular changes in ALS, in both natural history studies and human clinical trials. PET imaging has potential as a diagnostic biomarker that can establish upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms, as a prognostic biomarker that might help stratify patients for clinical trials, and as a pharmacodynamic biomarker that measures the biological effect of investigational drugs in the brain and spinal cord. In this Review, we discuss progress made with 30 years of PET imaging studies in ALS and consider future research needed to establish PET imaging biomarkers for ALS therapeutic development.
Collapse
Affiliation(s)
- Sheena Chew
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| | - Nazem Atassi
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 2019; 31:431-438. [PMID: 29750730 DOI: 10.1097/wco.0000000000000569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. RECENT FINDINGS The natural history of MND is now evaluated by presymptomatic, postmortem and multi-timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. SUMMARY In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
Collapse
|
15
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
16
|
Finelli MJ, Paramo T, Pires E, Ryan BJ, Wade-Martins R, Biggin PC, McCullagh J, Oliver PL. Oxidation Resistance 1 Modulates Glycolytic Pathways in the Cerebellum via an Interaction with Glucose-6-Phosphate Isomerase. Mol Neurobiol 2018; 56:1558-1577. [PMID: 29905912 PMCID: PMC6368252 DOI: 10.1007/s12035-018-1174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Glucose metabolism is essential for the brain: it not only provides the required energy for cellular function and communication but also participates in balancing the levels of oxidative stress in neurons. Defects in glucose metabolism have been described in neurodegenerative disease; however, it remains unclear how this fundamental process contributes to neuronal cell death in these disorders. Here, we investigated the molecular mechanisms driving the selective neurodegeneration in an ataxic mouse model lacking oxidation resistance 1 (Oxr1) and discovered an unexpected function for this protein as a regulator of the glycolytic enzyme, glucose-6-phosphate isomerase (GPI/Gpi1). Initially, we present a dysregulation of metabolites of glucose metabolism at the pre-symptomatic stage in the Oxr1 knockout cerebellum. We then demonstrate that Oxr1 and Gpi1 physically and functionally interact and that the level of Gpi1 oligomerisation is disrupted when Oxr1 is deleted in vivo. Furthermore, we show that Oxr1 modulates the additional and less well-understood roles of Gpi1 as a cytokine and neuroprotective factor. Overall, our data identify a new molecular function for Oxr1, establishing this protein as important player in neuronal survival, regulating both oxidative stress and glucose metabolism in the brain.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Brent J Ryan
- Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Richard Wade-Martins
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Parks Road, Oxford, OX1 3QU, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK. .,MRC Harwell Institute, Harwell Campus, South Parks Road, Oxford, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
17
|
Kisler K, Lazic D, Sweeney MD, Plunkett S, Khatib ME, Vinogradov SA, Boas DA, Sakadžić S, Zlokovic BV. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 2018; 13:1377-1402. [PMID: 29844521 PMCID: PMC6402338 DOI: 10.1038/nprot.2018.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - David A. Boas
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sava Sakadžić
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
18
|
News on the journal Neurological Sciences in 2017. Neurol Sci 2018; 39:15-21. [PMID: 29327225 DOI: 10.1007/s10072-017-3241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|