1
|
Du Y, Yang L, Wang X, Jiang N, Zhou Y, Chen R, Li H. Proteome Profiling of Experimental Autoimmune Encephalomyelitis Mouse Model and the Effect of a SUMO E1 Inhibitor. J Proteome Res 2024; 23:5312-5325. [PMID: 39568369 DOI: 10.1021/acs.jproteome.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases, causing demyelination and inflammation in the central nervous system. The pathology of MS has been extensively studied using the experimental autoimmune encephalomyelitis (EAE) mouse model. However, the molecular mechanisms are still largely unclear and require further investigation. In this study, we carried out quantitative proteomic analysis of the brain and spinal cord tissues in mice induced with EAE using a data-independent acquisition strategy and identified 744 differentially regulated proteins in the brain and 741 in the spinal cord. The changed proteins were highly related with phagocytosis, lysosomal enzymes, inflammasome activation, complements, and synaptic loss processes. Moreover, gene set enrichment analysis revealed the elevation of the SUMOylation process in EAE with the increase of SUMOylation-related enzymes and modification targets. Furthermore, to test the possibility of treating MS by targeting SUMOylation, we explored the application of a selective SUMO E1 inhibitor, TAK-981. Intriguingly, TAK-981 suppressed the global SUMOylation level in the brain and significantly alleviated the symptoms of EAE in mice. Our findings contribute to a better understanding of MS pathology, reveal the important role of SUMOylation in disease progression, and demonstrate the potential of the SUMO E1 inhibitor as a novel treatment for MS.
Collapse
Affiliation(s)
- Yingdong Du
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Linlin Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoxiao Wang
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanting Zhou
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hongyan Li
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
2
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Association Study of ANRIL Genetic Variants and Multiple Sclerosis. J Mol Neurosci 2018; 65:54-59. [PMID: 29713948 DOI: 10.1007/s12031-018-1069-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of central nervous system with several genetic and environmental risk factors. Genes with regulatory roles on immune system have been implicated in its pathogenesis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to control some aspects of immune response. Among them is antisense non-coding RNA in the INK4 locus (ANRIL) whose involvement in NF-κB signaling pathway has been highlighted. In the current study, we evaluated the association between rs1333045, rs4977574, rs1333048, and rs10757278 variants of ANRIL and MS risk in a population of 410 Iranian MS patients and 410 healthy subjects. There was no significant difference in allele and genotype frequencies between MS patients and healthy subjects. However, haplotype analysis (rs1333045, rs1333048, rs4977574, and rs10757278 respectively) demonstrated protective effect of CCGG and TAAA haplotypes against MS (P values of 0.043 and 0.0026 respectively). In addition, TAGG and CCGA haplotypes were significantly associated with MS risk in the studied population (P values of 0.0065 and 0.024 respectively). The present study reveals a possible role for ANRIL in the pathogenesis of MS.
Collapse
|
5
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Taheri M, Ghafouri-Fard S, Solgi G, Sayad A, Mazdeh M, Omrani MD. Determination of cytokine levels in multiple sclerosis patients and their relevance with patients' response to Cinnovex. Cytokine 2017; 96:138-143. [PMID: 28399486 DOI: 10.1016/j.cyto.2017.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is a heterogeneous chronic immune-mediated disorder of the central nervous system (CNS) with several environmental and genetic factors participating in its development and disease course. Interferon (IFN)-β therapy is considered as the first line treatment in this disorder. The present study enrolled 231 relapsing-remitting MS patients who were diagnosed as IFN-β responders (n=146) and non-responders (n=85). Serum cytokine levels were analyzed by commercially available ELISA kits in distinct groups based on HLA-A, -B and -DRB1 alleles. IFN-γ levels were significantly higher in responders compared with non-responders, whereas IL-17A and IL-6 had the opposite trend. The levels of IL-10 and IL-4 were not significantly different between two groups. IFN-γ and IL-17A levels were associated with response to IFN-β. Comparison of cytokine levels revealed higher IFN-γ levels in HLA-DRB1∗04 positive patients (n=72) compared with HLA-DRB1∗04 negative patients (n=159). In responder group, patients who were positive for HLA-DRB1∗15 had significantly higher levels of IL-6 compared to HLA-DRB1∗15 negative patients. IL-17A levels tend to be higher in responder patients who were positive for HLA-DRB1∗04 compared with those were negative for the same allele. This study suggests that the serum levels of pro- and anti-inflammatory cytokines are different among IFN-β responders and non-responders. Future studies are needed to confirm their efficiency in determination of response to IFN-β in MS patients.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Solgi
- Molecular Immunology Research Group, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|