1
|
Kaspute G, Ramanavicius A, Prentice U. Natural drug delivery systems for the treatment of neurodegenerative diseases. Mol Biol Rep 2025; 52:217. [PMID: 39928236 DOI: 10.1007/s11033-025-10286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Today, herbal drugs are prominent in the pharmaceutical industry due to their well-known therapeutic and side effects. Plant-based compounds often face limitations such as poor solubility, low bioavailability, and instability in physiological environments, restricting their therapeutic efficacy and delivery. Nanotechnology-based solutions, including nanoparticle formulations and advanced delivery systems like liposomes and transfersomes, address these issues by enhancing solubility, stability, bioavailability, and targeted delivery, thereby optimizing the therapeutic potential of phytoactive compounds. Neuroinflammation can be a cause of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, or amyotrophic lateral sclerosis. Consequently, there is a need for the optimal delivery of a pharmacological anti-inflammatory agents to the CNS. Thus, the non-invasive administration of a stable compound at a therapeutic concentration is needed to assure molecule crossing through the blood-brain barrier. Natural resources have more structural diversity and novelty than synthetic compounds, e.g. plant-derived drug products have higher molecular weights, incorporate more oxygen atoms, and are more complex. As a result, plant-derived products have unique features which can be used to effectively modulate neuroinflammation. Therefore, this review aims to identify herbal molecules capable of targeting neuroinflammation and present novel strategies for their efficient delivery.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
2
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
3
|
Tang WK, Lee JCY. Association of Fast-Food Intake with Depressive and Anxiety Symptoms among Young Adults: A Pilot Study. Nutrients 2024; 16:3317. [PMID: 39408284 PMCID: PMC11478624 DOI: 10.3390/nu16193317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Background: High intake of fast food has been linked to increased risks of both depressive and anxiety disorders. However, associations between individual fast-food items and depressive/anxiety disorders are rarely examined. Method: Using cross-sectional survey the association between common fast-food items and depressive/anxiety symptoms among 142 young Hong Kong adults aged 18-27 years old was examined. A qualitative food frequency questionnaire was employed to measure the intake frequency of 22 common fast-food items found in Hong Kong. Occurrence of significant depressive and anxiety symptoms was measured by the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7), respectively. Primary measures were multivariate-adjusted odds ratios for occurrence of depressive and anxiety symptoms compared with the low intake frequency group for common fast-food items. Results: Our observations suggest that frequent intake of high-fat, -sugar, and -sodium fast-foods increased depressive symptoms, while frequent high-fat fast-food intake was associated with anxiety symptoms. However, frequent intake of sugar-free beverages reduced the risk of depressive symptoms. Conclusions: Habitual intake of certain fast foods were related to depressive/anxiety symptoms in young adults.
Collapse
Affiliation(s)
- Wai-Kin Tang
- HKU School of Professional and Continuing Education, Hong Kong SAR, China;
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Morton L, Paton C, Braakhuis A. The Effects of Polyphenol Supplementation on BDNF, Cytokines and Cognition in Trained Male Cyclists following Acute Ozone Exposure during High-Intensity Cycling. Nutrients 2024; 16:233. [PMID: 38257125 PMCID: PMC10819340 DOI: 10.3390/nu16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The neurotoxic effects of ozone exposure are related to neuroinflammation and increases in reactive oxygen species (ROS). This study aimed to assess inflammation, Brain-Derived Neurotrophic Factor (BDNF), and cognition in healthy male cyclists following polyphenol supplementation and exercise in an ozone-polluted environment. Ten male cyclists initially completed a maximal incremental test and maximal effort 4 km time trial in ambient air. Cyclists then completed two trials in an ozone-polluted environment (0.25 ppm) following 7 days of supplementation with either polyphenol (POLY) or placebo (PL). Experimental trials consisted of a three-stage submaximal test followed by a 4 km time trial. Blood samples were drawn pre- and post-exercise, and analyzed for BDNF, interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor (TNF-α). The Stroop test and serial subtraction task were performed before ozone exposure and again after the 4 km TT. Serum BDNF increased post-exercise (p < 0.0001), and positive differences were observed post-exercise in the ozone POLY group relative to PL (p = 0.013). Plasma IL-6 increased post-exercise (p = 0.0015), and TNF-α increased post-ozone exposure (p = 0.0018). There were no differences in Stroop or serial subtraction tasks pre- or post-exercise. Exercise increases BDNF in ozone.
Collapse
Affiliation(s)
- Lillian Morton
- Department of Nutrition, Faculty of Medical & Health Science, The University of Auckland, Auckland 1023, New Zealand;
| | - Carl Paton
- School of Health and Sport Science, The Eastern Institute of Technology, Napier 4142, New Zealand;
| | - Andrea Braakhuis
- Department of Nutrition, Faculty of Medical & Health Science, The University of Auckland, Auckland 1023, New Zealand;
| |
Collapse
|
6
|
Lin Y, Li S, Chen T, Lin Y, Cheng Z, Ni L, Lu JJ, Huang M. Phytochemical compositions and biological activities of the branches and leaves of Ormosia hosiei Hemsl. et Wils. J Pharm Biomed Anal 2023; 226:115238. [PMID: 36645985 DOI: 10.1016/j.jpba.2023.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Ormosia hosiei Hemsl. et Wils. is an economical and medicinal plant, increasingly cultivated in China; however, its branches and leaves are often pruned as waste. This is the first study focused on the phytochemical profiles and antioxidant, anti-α-glucosidase, anti-tyrosinase, and anti-neuroinflammatory activities of the branches and leaves of O. hosiei. Herein, thirty-seven characteristic compounds were identified by UPLC-MS/MS and twelve were detected for the first time in O. hosiei. Twenty-seven phenolics were further quantified and significant differences in phenolic compositions between the branches and leaves of O. hosiei were observed. The ethanol extracts exhibited promising antioxidant, anti-α-glucosidase, anti-tyrosinase, and anti-neuroinflammatory effects, and the bioactivities significantly correlated with total phenolic content and twelve individual phenolics. Naringin, genistein, vitexin, vitexin-2-O-rhamnoside, syringaresinol and syringaresinol-4-O-β-D-glucopyranoside can be considered potential quality markers of O. hosiei. Our results provided solid evidence that the branches and leaves of O. hosiei deserve more attention and exploitation, considering the potential to be developed as functional foods or herbal medicines.
Collapse
Affiliation(s)
- Yifan Lin
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shaohua Li
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tao Chen
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yanxiang Lin
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zaixing Cheng
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lin Ni
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
7
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|