1
|
Yan H, Hua Y, Ni J, Wu X, Xu J, Zhang Z, Dong J, Xiong Z, Yang L, Yuan H. Acupuncture ameliorates inflammation by regulating gut microbiota in acute ischemic stroke. IBRO Neurosci Rep 2025; 18:443-452. [PMID: 40144797 PMCID: PMC11938260 DOI: 10.1016/j.ibneur.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background Acute ischemic stroke(AIS) is a major life-threatening disease.Some studies have found that AIS may be related to gut flora and immune responses. Acupuncture is used widely in the treatment of AIS. However its relevant mechanism is unclear enough. Therefore, in this study, we wanted to confirm that acupuncture was treating AIS through gut flora and immune response. Methods We randomly divided 18 rats into equal three groups, including Sham, Middle Cerebral Artery Occlusion (MCAO) and Acupuncture.Rats in the Acupuncture group for a continuous period of three days after surgery. Neurological deficits were assessed using Longa's method, and detection of intestinal flora by 16s rRNA gene sequencing, determination of SCFAs by gas chromatography-mass spectrometry, detection of HDAC and inflammatory cytokines by elisa assay, detection of Th17 and Treg cells by flow cytometry and, observation of pathological and morphological changes in brain and colon tissues by HE staining. Results Acupuncture improved the degree of impaired neurological function in MCAO rats and regulated the type and abundance of intestinal bacteria, increased SCFAs of MCAO rats, decreased HDAC1 and HDAC2, modulated the Th17/Treg imbalance, reduced the level of inflammatory factors in the peripheral blood and altered the pathology of the intestine and brain. Conclusion Acupuncture repaired neurologic deficits after AIS and may be associated with an immune-inflammatory response mediated by gut microbiota.
Collapse
Affiliation(s)
- Haoyue Yan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Yini Hua
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Jinxia Ni
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Xiaona Wu
- Department of Rehabilitation, Beijing Fengtai Hospital, China
| | - Jingni Xu
- Dongcheng District Dongzhimen Community Healthcare Center, China
| | - Ziniu Zhang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Juwei Dong
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Zhihao Xiong
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Lei Yang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Hongwei Yuan
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| |
Collapse
|
2
|
Xue X, Meng J, Huang C, Sun Z, Nie S. The association between enema and nervous system injury in Diquat poisoning. Sci Rep 2025; 15:17222. [PMID: 40382423 PMCID: PMC12085642 DOI: 10.1038/s41598-025-02242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
This study aimed to investigate whether enema is associated with nervous system injury caused by diquat poisoning using a population-based case-control analysis. Medical records of patients with acute diquat poisoning admitted to the hospital from January 2018 to January 2024 were retrospectively collected. Central nervous system injury symptoms following diquat poisoning defined the case group, while the control group were matched 1:2 on population-based without nervous system injury in diquat poisoning patients. Conditional logistic regression models were used for analysis. We identified 101 diquat poisoning patients with nervous system injury and selected 202 diquat poisoning patients without nervous system injury. Diquat poisoning patients performed 2 and ≧ 3 enemas had ORs of nervous system injury of 3.084 (95% CI 1.230, 7.734) and 4.693 (95% CI 1.408, 15.645) compared with diquat poisoning patients with no enema, respectively. Further analyses were performed in various age subgroups. The ORs of conducting 2 and ≧ 3 enemas were dramatically higher among case group than control group in subgroup aged ≧ 60 years old (OR 10.184, 14.982 respectively). We concluded that enema may be associated with an increased risk of nervous system injury caused by DQ poisoning, particularly among the elderly.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Jiankang Meng
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Bai J, Zhao Y, Wang Z, Qin P, Huang J, Cheng Y, Wang C, Chen Y, Liu L, Zhang Y, Wu B. Stroke-Associated Pneumonia and the Brain-Gut-Lung Axis: A Systematic Literature Review. Neurologist 2025:00127893-990000000-00191. [PMID: 40331253 DOI: 10.1097/nrl.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND Stroke-associated pneumonia (SAP), a highly lethal complication following stroke, is closely linked to dysregulation of the "brain-gut-lung axis." Accumulating evidence indicates that stroke triggers intestinal alterations through the brain-gut axis, while multiple studies confirm that gut-derived changes can mediate pneumonia through the gut-lung axis. However, the mechanisms connecting stroke-induced intestinal dyshomeostasis to SAP remain incompletely elucidated, and the multiorgan interaction mechanisms of the "brain-gut-lung axis" in SAP pathogenesis require further exploration. REVIEW SUMMARY This systematic literature review systematically searched databases, including PubMed, using the keywords "stroke," "gastrointestinal microbiome," and "bacterial pneumonia," incorporating 80 mechanistic studies. Key findings reveal that stroke initiates a cascade of "neuro-microbial-immune" pathway interactions along the brain-gut-lung axis, leading to intestinal dyshomeostasis characterized by microbiota and metabolite alterations, barrier disruption, immune dysregulation, inflammatory responses, and impaired gut motility. These intestinal perturbations ultimately disrupt pulmonary immune homeostasis, promoting SAP development. In addition, stroke directly induces vagus nerve injury through the brain-gut axis, resulting in impaired swallowing and cough reflexes that exacerbate aspiration-related pulmonary infection risks. CONCLUSIONS Elucidating the role of the brain-gut-lung axis in SAP pathogenesis provides critical insights into its underlying mechanisms. This paradigm highlights intestinal homeostasis modulation and vagus nerve stimulation as promising therapeutic strategies for SAP prevention and management, advancing a multitargeted approach to mitigate poststroke complications.
Collapse
Affiliation(s)
- Jing Bai
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yusheng Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zihe Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Qin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Longxiao Liu
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Zhang
- Tianjin University of Traditional Chinese Medicine
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2024; 61:9735-9755. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Cha Z, Qiao Y, Lu Q, Wang Q, Lu X, Zhou H, Li T. Research progress and challenges of stem cell therapy for ischemic stroke. Front Cell Dev Biol 2024; 12:1410732. [PMID: 39040041 PMCID: PMC11260720 DOI: 10.3389/fcell.2024.1410732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.
Collapse
Affiliation(s)
- Zaihong Cha
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yisheng Qiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiyang Wang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tao Li
- Research Center for Clinical Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Neurosurgery and Neuroscience, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
6
|
Xian M, Ma Z, Zhan S, Shen L, Li T, Lin H, Huang M, Cai J, Hu T, Liang J, Liang S, Wang S. Network analysis of microbiome and metabolome to explore the mechanism of raw rhubarb in the protection against ischemic stroke via microbiota-gut-brain axis. Fitoterapia 2024; 175:105969. [PMID: 38643860 DOI: 10.1016/j.fitote.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.
Collapse
Affiliation(s)
- Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zuqing Ma
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ting Li
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingmin Huang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaying Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shengwang Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Traditional Chinese Medicine Resource Germplasm Bank Management Center, Yunfu 527322, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
8
|
Tan Z, Mao M, Jiang Z, Hu H, He C, Zhai C, Qian G. Causal Relationship between Gut Microbiota and Aneurysm: A Mendelian Randomization Study. Cerebrovasc Dis 2024; 54:59-69. [PMID: 38228101 DOI: 10.1159/000536177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION Observational studies have suggested a possible relationship between gut microbiota (GM) and aneurysm development. However, the nature of this association remains unclear due to the inherent limitations of observational research, such as reverse causation and confounding factors. To address this knowledge deficit, this study aimed to investigate and establish a causal link between GM and aneurysm development. METHODS Summary statistics regarding GM and aneurysms were collected from relevant genome-wide association studies. Two samples were used in mendelian randomization (MR). The principal MR technique utilized was inverse-variance weighting, a technique renowned for producing reliable causal effect estimations. Additional MR methods, including weighted median (WM), MR-Egger, MR-PRESSO, and simple mode methods, were employed to ensure the robustness of the aforementioned association and investigate potential biases. Sensitivity analyses were performed to determine the consistency of the MR findings. RESULTS Varying associations were observed between specific microbial taxa and the different aneurysms analyzed. A negative correlation was observed between aortic aneurysm (AA) and Lentisphaerae, Lentisphaeria, and Victivallales. Conversely, the genus FamilyXIIIUCG001 exhibited an increased risk association. Regarding abdominal AA, Victivallaceae showed a reduced risk, and Bilophila and Catenibacterium were associated with an increased risk. For thoracic AA, negative and positive correlations were observed with Lentisphaerae and Turicibacter, respectively. Lastly, in the case of cerebral aneurysm (CA), Firmicutes and Haemophilus were associated with a decreased risk, and Lachnoclostridium demonstrated an increased risk of association. CONCLUSION Our research has established causal relationships between specific GM components and various aneurysms. The obtained knowledge may aid in the development of microbiome-based interventions and the identification of novel biomarkers for targeted prevention strategies.
Collapse
Affiliation(s)
- Zhentao Tan
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, China,
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China,
| | - Menghui Mao
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhe Jiang
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huilin Hu
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaojie He
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Qian
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
9
|
Qin H, Yang F, Hao P, Zhang X. Gut microbiota and cerebrovascular diseases: a Mendelian randomization study. Front Microbiol 2023; 14:1228815. [PMID: 37637136 PMCID: PMC10448814 DOI: 10.3389/fmicb.2023.1228815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background The causal relationship between gut microbiota and cerebrovascular disease remains unknown, despite several recent studies reporting an association between the two. Methods To assess this relationship, we conducted a two-sample Mendelian randomization (MR) using summary statistics data from published genome-wide association studies (GWAS). This analysis allowed us to identify bacterial taxa that may affect cerebrovascular disease. Furthermore, we performed reverse MR to further analyze the significant bacterial taxa. Finally, we conducted a two-step MR analysis to examine the mediating role of metabolic factors [systolic blood pressure (SBP), type 2 diabetes (T2D), and body mass index (BMI)] in the association between gut microbiota and cerebrovascular disease. Additionally, a series of sensitivity analyses were carried out to validate the robustness of our findings. Results Our results showed that a genetically predicted high abundance of family Porphyromonadaceae reduced the risk of intracranial aneurysms (IA). Moreover, using inverse variance weighted (IVW) estimates, we found a nominal causal relationship between seventeen gut microbiota and IA, as well as its subtypes. In the case of stroke and its subtypes, we observed a nominal causal relationship with thirteen, eleven, eleven, nine, and eight bacteria for AS, AIS, CES, LAS, and SVS, respectively. Reverse MR analysis showed no significant causal relationship between intracranial aneurysms and gut microbiota. However, we did find that genetically predicted any stroke (AS) and any ischemic stroke (AIS) reduced the abundance of family Clostridiaceae1 (OR: 0.74, 95% CI: 0.62-0.87, p = 3.39 × 10-4, and OR: 0.75, 95% CI: 0.66-0.87, p = 7.06 × 10-5, respectively). Furthermore, genetic prediction of AIS (OR: 0.87, 95% CI: 0.77-0.99, p = 3.05 × 10-2) was associated with a reduced abundance of the order Clostridiales. Moreover, genus Streptococcus exhibited effects on AS, AIS, and SVS which were mediated by T2D. Conversely, the association between genus Eubacterium brachy group and AIS was mediated by SBP. No significant heterogeneity of instrumental variables or horizontal pleiotropy was observed. Conclusion This MR analysis indicates that there exists a beneficial or detrimental causal effect of gut microbiota composition on cerebrovascular disease. And SBP and T2D may play mediating role in this process.
Collapse
Affiliation(s)
- Hao Qin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Fan Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Hao
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Shi Y, Zhao E, Li L, Zhao S, Mao H, Deng J, Ji W, Li Y, Gao Q, Zeng S, Ma L, Xi G, You Y, Shao J, Fang X, Wang F. Alteration and clinical potential in gut microbiota in patients with cerebral small vessel disease. Front Cell Infect Microbiol 2023; 13:1231541. [PMID: 37496806 PMCID: PMC10366612 DOI: 10.3389/fcimb.2023.1231541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a cluster of microvascular disorders with unclear pathological mechanisms. The microbiota-gut-brain axis is an essential regulatory mechanism between gut microbes and their host. Therefore, the compositional and functional gut microbiota alterations lead to cerebrovascular disease pathogenesis. The current study aims to determine the alteration and clinical value of the gut microbiota in CSVD patients. Methods Sixty-four CSVD patients and 18 matched healthy controls (HCs) were included in our study. All the participants underwent neuropsychological tests, and the multi-modal magnetic resonance imaging depicted the changes in brain structure and function. Plasma samples were collected, and the fecal samples were analyzed with 16S rRNA gene sequencing. Results Based on the alpha diversity analysis, the CSVD group had significantly decreased Shannon and enhanced Simpson compared to the HC group. At the genus level, there was a significant increase in the relative abundances of Parasutterella, Anaeroglobus, Megasphaera, Akkermansia, Collinsella, and Veillonella in the CSVD group. Moreover, these genera with significant differences in CSVD patients revealed significant correlations with cognitive assessments, plasma levels of the blood-brain barrier-/inflammation-related indexes, and structural/functional magnetic resonance imaging changes. Functional prediction demonstrated that lipoic acid metabolism was significantly higher in CSVD patients than HCs. Additionally, a composite biomarker depending on six gut microbiota at the genus level displayed an area under the curve of 0.834 to distinguish CSVD patients from HCs using the least absolute shrinkage and selection operator (LASSO) algorithm. Conclusion The evident changes in gut microbiota composition in CSVD patients were correlated with clinical features and pathological changes of CSVD. Combining these gut microbiota using the LASSO algorithm helped identify CSVD accurately.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - En Zhao
- Department of Gastroenterology, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Lei Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Haixia Mao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jingyu Deng
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yang Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Siyuan Zeng
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yiping You
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
11
|
Wei YH, Bi RT, Qiu YM, Zhang CL, Li JZ, Li YN, Hu B. The gastrointestinal-brain-microbiota axis: a promising therapeutic target for ischemic stroke. Front Immunol 2023; 14:1141387. [PMID: 37342335 PMCID: PMC10277866 DOI: 10.3389/fimmu.2023.1141387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemic stroke is a highly complex systemic disease characterized by intricate interactions between the brain and gastrointestinal tract. While our current understanding of these interactions primarily stems from experimental models, their relevance to human stroke outcomes is of considerable interest. After stroke, bidirectional communication between the brain and gastrointestinal tract initiates changes in the gastrointestinal microenvironment. These changes involve the activation of gastrointestinal immunity, disruption of the gastrointestinal barrier, and alterations in gastrointestinal microbiota. Importantly, experimental evidence suggests that these alterations facilitate the migration of gastrointestinal immune cells and cytokines across the damaged blood-brain barrier, ultimately infiltrating the ischemic brain. Although the characterization of these phenomena in humans is still limited, recognizing the significance of the brain-gastrointestinal crosstalk after stroke offers potential avenues for therapeutic intervention. By targeting the mutually reinforcing processes between the brain and gastrointestinal tract, it may be possible to improve the prognosis of ischemic stroke. Further investigation is warranted to elucidate the clinical relevance and translational potential of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- *Correspondence: Ya-nan Li, ; Bo Hu,
| | - Bo Hu
- *Correspondence: Ya-nan Li, ; Bo Hu,
| |
Collapse
|
12
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
13
|
Xu H, Xu Z, Long S, Li Z, Jiang J, Zhou Q, Huang X, Wu X, Wei W, Li X. The role of the gut microbiome and its metabolites in cerebrovascular diseases. Front Microbiol 2023; 14:1097148. [PMID: 37125201 PMCID: PMC10140324 DOI: 10.3389/fmicb.2023.1097148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The gut microbiome is critically involved in maintaining normal physiological function in the host. Recent studies have revealed that alterations in the gut microbiome contribute to the development and progression of cerebrovascular disease via the microbiota-gut-brain axis (MGBA). As a broad communication network in the human body, MGBA has been demonstrated to have significant interactions with various factors, such as brain structure and function, nervous system diseases, etc. It is also believed that the species and composition of gut microbiota and its metabolites are intrinsically linked to vascular inflammation and immune responses. In fact, in fecal microbiota transplantation (FMT) research, specific gut microbiota and downstream-related metabolites have been proven to not only participate in various physiological processes of human body, but also affect the occurrence and development of cerebrovascular diseases directly or indirectly through systemic inflammatory immune response. Due to the high mortality and disability rate of cerebrovascular diseases, new treatments to improve intestinal dysbacteriosis have gradually attracted widespread attention to better ameliorate the poor prognosis of cerebrovascular diseases in a non-invasive way. This review summarizes the latest advances in the gut microbiome and cerebrovascular disease research and reveals the profound impact of gut microbiota dysbiosis and its metabolites on cerebrovascular diseases. At the same time, we elucidated molecular mechanisms whereby gut microbial metabolites regulate the expression of specific interleukins in inflammatory immune responses. Moreover, we further discuss the feasibility of novel therapeutic strategies targeting the gut microbiota to improve the outcome of patients with cerebrovascular diseases. Finally, we provide new insights for standardized diagnosis and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ziyue Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaopeng Huang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
15
|
Liu Y, Chu M, Wang D, Luo Y, Liu Z, Zhao J. Risk factors for small intestinal bacterial overgrowth in patients with acute ischaemic stroke. J Med Microbiol 2023; 72. [PMID: 36762525 DOI: 10.1099/jmm.0.001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction. The intestinal flora has become a promising new target in acute ischaemic stroke (AIS), and small intestinal bacterial overgrowth (SIBO) is a common pathological condition of the intestinal flora. Recently, the lactose hydrogen-methane breath test has emerged as a non-invasive and economical method for the detection of SIBO in AIS patients. Exploring the prevalence of SIBO and its associated risk factors will provide a clinical basis for the association between intestinal flora and AIS.Hypothesis/Gap Statement. Given that the prevalence of SIBO and its risk factors in patients with AIS remain to be studied, there is a need to investigate them.Aim. This study aimed to investigate the prevalence and risk factors of SIBO in patients with AISMethodology. Eighty patients tested for SIBO using the lactulose hydrogen-methane breath test were evaluated. Patients were divided into SIBO-positive and SIBO-negative groups according to the presence or absence of SIBO, respectively. The baseline characteristics and clinical biochemical indicators of the patients were compared between the two groups. The independent risk factors and predictive value of SIBO in AIS patients were determined using multivariate logistic regression and receiver operating characteristic (ROC) curve analyses.Results. Of the 80 consecutive patients with AIS, 23 (28.8 %) tested positive for SIBO. Triglyceride (TG) and homocysteine (Hcy) levels were identified as independent risk factors for SIBO in patients with AIS using multivariate logistic regression analysis (P<0.005). ROC curve analysis showed that the area under the curve (AUC) of TG was 0.690 (95 % CI 0.577-0.789, P=0.002). The sensitivity, specificity and optimal cut-off values were 95.7 %, 35.1 % and 1.14 mmol l-1, respectively. The AUC of Hcy was 0.676 (95 % CI 0.562-0.776, P=0.01). The sensitivity, specificity and optimal cut-off values were 73.9 %, 59.7 % and 14.1 µmol-1, respectively. When TG and Hcy levels were combined, the AUC increased to 0.764 (95 % CI 0.656-0.852, P<0.001). The specificity and sensitivity were 61.4 and 82.6 %, respectively. This showed that the combined detection of TG and Hcy levels had a higher predictive valueConclusion. The prevalence of SIBO in patients with AIS was 28.8 %. TG and Hcy levels are independent risk factors for SIBO in patients with AIS. Both markers had good predictive value for the occurrence of SIBO. In the future, we should actively utilize these indicators to prevent intestinal flora imbalance and the occurrence of SIBO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Daosheng Wang
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yunhe Luo
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhuohang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
16
|
Emonds JJ, Arlt F, Gaudl A, Reinicke M, Heinemann M, Lindner D, Laudi S, Ceglarek U, Meixensberger J. Trimethylamine N-oxide (TMAO) in patients with subarachnoid hemorrhage: a prospective observational study. Acta Neurochir (Wien) 2023; 165:1277-1287. [PMID: 36695932 PMCID: PMC10140079 DOI: 10.1007/s00701-022-05485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND It is suspected that microbiome-derived trimethylamine N-oxide (TMAO) may enhance platelet responsiveness and accordingly be thrombophilic. The purpose of this prospective observational study is to evaluate TMAO in patients with subarachnoid hemorrhage (SAH) and compare it with a control group. A secondary aim was to investigate TMAO in the cerebrospinal fluid (CSF) from SAH patients. This should provide a better understanding of the role of TMAO in the pathogenesis of SAH and its thrombotic complications. METHODS The study included patients with diagnosed spontaneous SAH recruited after initial treatment on admission and patients with nerve, nerve root, or plexus disorders serving as controls. Blood samples were gathered from all patients at recruitment. Additionally, sampling of SAH patients in the intensive care unit continued daily for 14 days. The CSF was collected out of existing external ventricular drains whenever possible. RESULTS Thirty-four patients diagnosed with SAH, and 108 control patients participated in this study. Plasma TMAO levels at baseline were significantly lower in the SAH group (1.7 μmol/L) compared to the control group (2.9 μmol/L). TMAO was detectable in the CSF (0.4 μmol/L) and significantly lower than in plasma samples of the SAH group at baseline. Plasma and CSF TMAO levels correlated positively. The TMAO levels did not differ significantly during the observation period of 15 days. CONCLUSIONS Although we assumed that patients with higher TMAO levels were at higher risk for SAH a priori, plasma TMAO levels were lower in patients with SAH compared with control subjects with nerve, nerve root, or plexus disorders on admission to the hospital. A characteristic pattern of plasma TMAO levels in patients with SAH was not found.
Collapse
Affiliation(s)
- Julian Josef Emonds
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Felix Arlt
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Alexander Gaudl
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Mitja Heinemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Dirk Lindner
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Sven Laudi
- Department of Anaesthesia and Intensive Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jürgen Meixensberger
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
17
|
Wang J, Liu X, Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front Neurosci 2023; 17:1158057. [PMID: 36937662 PMCID: PMC10017736 DOI: 10.3389/fnins.2023.1158057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The microbiota-gut-brain axis connects the brain and the gut in a bidirectional manner. The organism's homeostasis is disrupted during an ischemic stroke (IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites. Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes by inducing systemic inflammation. Some studies have recently provided novel insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse events of the gut microbiome in IS. In this review, we discussed the view that the gut microbiome is of clinical value in personalized therapeutic regimens for IS. Based on recent non-clinical and clinical studies on stroke, we discussed new therapeutic strategies that might be developed by modulating gut bacterial flora. These strategies include dietary intervention, fecal microbiota transplantation, probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell transplantation. Although the gut microbiota-targeted intervention is optimistic, some issues need to be addressed before clinical translation. These issues include a deeper understanding of the potential underlying mechanisms, conducting larger longitudinal cohort studies on the gut microbiome and host responses with multiple layers of data, developing standardized protocols for conducting and reporting clinical analyses, and performing a clinical assessment of multiple large-scale IS cohorts. In this review, we presented certain opportunities and challenges that might be considered for developing effective strategies by manipulating the gut microbiome to improve the treatment and prevention of ischemic stroke.
Collapse
|
18
|
Gao L, Xia X, Shuai Y, Zhang H, Jin W, Zhang X, Zhang Y. Gut microbiota, a hidden protagonist of traditional Chinese medicine for acute ischemic stroke. Front Pharmacol 2023; 14:1164150. [PMID: 37124192 PMCID: PMC10133705 DOI: 10.3389/fphar.2023.1164150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is one of the leading diseases causing death and disability worldwide, and treatment options remain very limited. Traditional Chinese Medicine (TCM) has been used for thousands of years to treat ischemic stroke and has been proven to have significant efficacy, but its mechanism of action is still unclear. As research related to the brain-gut-microbe axis progresses, there is increasing evidence that the gut microbiota plays an important role during AIS. The interaction between TCM and the gut microbiota has been suggested as a possible key link to the therapeutic effects of TCM. We have compiled and reviewed recent studies on the relationship between AIS, TCM, and gut microbiota, with the expectation of providing more ideas to elucidate the mechanism of action of TCM in the treatment of AIS.
Collapse
Affiliation(s)
- Lin Gao
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yinqi Shuai
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Wei Jin
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
| | - Xiaoyun Zhang
- Emergency Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| | - Yi Zhang
- Geriatric Department, Chengdu University of Traditional Chinese Medicine Affiliated Hospital, Chengdu, Sichuan, China
- *Correspondence: Yi Zhang, ; Xiaoyun Zhang,
| |
Collapse
|
19
|
Zou X, Wang L, Xiao L, Wang S, Zhang L. Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies. Front Immunol 2022; 13:975921. [PMID: 36389714 PMCID: PMC9659965 DOI: 10.3389/fimmu.2022.975921] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/28/2023] Open
Abstract
The high morbidity, mortality, and disability rates associated with cerebrovascular disease (CeVD) pose a severe danger to human health. Gut bacteria significantly affect the onset, progression, and prognosis of CeVD. Gut microbes play a critical role in gut-brain interactions, and the gut-brain axis is essential for communication in CeVD. The reflection of changes in the gut and brain caused by gut bacteria makes it possible to investigate early warning biomarkers and potential treatment targets. We primarily discussed the following three levels of brain-gut interactions in a systematic review of the connections between gut microbiota and several cerebrovascular conditions, including ischemic stroke, intracerebral hemorrhage, intracranial aneurysm, cerebral small vessel disease, and cerebral cavernous hemangioma. First, we studied the gut microbes in conjunction with CeVD and examined alterations in the core microbiota. This enabled us to identify the focus of gut microbes and determine the focus for CeVD prevention and treatment. Second, we discussed the pathological mechanisms underlying the involvement of gut microbes in CeVD occurrence and development, including immune-mediated inflammatory responses, variations in intestinal barrier function, and reciprocal effects of microbial metabolites. Finally, based on the aforementioned proven mechanisms, we assessed the effectiveness and potential applications of the current therapies, such as dietary intervention, fecal bacterial transplantation, traditional Chinese medicine, and antibiotic therapy.
Collapse
Affiliation(s)
- Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leiyun Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Linxiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Changsha, Hunan, China
| |
Collapse
|