1
|
Martín-Bórnez M, Shar N, Nour MA, Murphy D, Elsayed I, Megha SN, Nwaokorie F, Olusanya A, Kuznetsov N, Bandres-Ciga S, Noyce AJ, Iwaki H, Jones L, Gómez-Garre P, Mir P, Periñan MT. Does COMT Play a Role in Parkinson's Disease Susceptibility Across Diverse Ancestral Populations? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325572. [PMID: 40297458 PMCID: PMC12036390 DOI: 10.1101/2025.04.11.25325572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background The catechol-O-methyltransferase (COMT) gene is involved in brain catecholamine metabolism, but its association with Parkinson's disease (PD) risk remains unclear. Objective To investigate the relationship between COMT genetic variants and PD risk across diverse ancestries. Methods We analyzed COMT variants in 2,251 PD patients and 2,835 controls of European descent using whole-genome sequencing from the Accelerating Medicines Partnership-Parkinson Disease (AMP-PD), along with 20,427 PD patients and 11,837 controls from 10 ancestries using genotyping data from the Global Parkinson's Genetics Program (GP2). Results Utilizing the largest case-control datasets to date, no significant enrichment of COMT risk alleles in PD patients was observed across any ancestry group after correcting for multiple testing. Among Europeans, no correlations with cognitive decline, motor function, motor complications, or time to LID onset were observed. Conclusions These findings emphasize the need for larger, diverse cohorts to confirm the role of COMT in PD development and progression.
Collapse
Affiliation(s)
- Miguel Martín-Bórnez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Nisar Shar
- Department of clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NED University of Engineering & Technology, Karachi, Pakistan
| | | | - David Murphy
- Department of clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmedani, Sudan
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shri N Megha
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Francisca Nwaokorie
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Adedunni Olusanya
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Nigeria
| | - Nicole Kuznetsov
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica, Washington DC, USA
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Center for Preventive Neurology, Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Li Y, Li M, Wang M, Yao J, Li F, Chen S, Yin X, Gao Z. Multigenetic pharmacogenomics-guided treatment shows greater improvements on motor symptoms compared to usual therapy in Parkinson's disease: a small real-word prospective cohort study. Front Pharmacol 2025; 16:1502379. [PMID: 40201683 PMCID: PMC11975922 DOI: 10.3389/fphar.2025.1502379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background Dopamine replacement therapy is a cornerstone of Parkinson's disease treatment. In clinical practice, there is considerable variability in patients' responses, tolerability, and safety regarding anti-parkinsonian medications, which is largely influenced by genetic polymorphisms in pharmacokinetic and pharmacodynamic genes. However, the application of multigenetic pharmacogenomics-guided treatment (MPGT) to optimize therapeutic outcomes in Parkinson's disease (PD) remains under-explored. In this study, we conducted a prospective cohort investigation to evaluate the potential benefits of MPGT on motor symptoms in PD patients. Methods A total of 28 patients with PD were followed for 4 weeks. Among them, 22 patients underwent multigenetic pharmacogenomic testing, with 13 receiving treatments based on the test results (MPGT group). The remaining 15 received standard care (TAU group). Baseline characteristics, as well as changes in Unified Parkinson's Disease Rating Scale (UPDRS) III scores and sub-scores, were compared between the two groups. Associations between various single nucleotide polymorphisms (SNPs) and treatment outcomes were analyzed using generalized linear models. Results At the 4-week follow-up, the MPGT group showed significantly greater reductions in UPDRS III total scores (p < 0.05) and limb sub-scores (p < 0.01) compared to the TAU group. These differences remained significant after adjusting for increases in levodopa equivalent daily dose (p = 0.011 and p = 0.002, respectively) and piribedil use (p = 0.006 and p = 0.004, respectively). Patients homozygous for the major allele of rs4984241 (AA vs. AG+GG, p = 0.003), rs4680 (GG vs. GA+AA, p = 0.013), rs1076560/rs2283265 (CC vs. AC+AA, p = 0.039) and rs622342 (AA vs. AC, p = 0.043) showed greater improvement in total UPDRS III, postural instability and gait difficulty (PIGD), rigidity and tremor scores, respectively, compared to those carrying at least one minor allele. Conclusion MGPT demonstrates significant potential as a valuable tool for personalized treatment in PD patients. Additionally, we identified several SNPs associated with the responsiveness to chronic administration of multiple anti-parkinsonian drugs. However, to confirm these findings, well-designed studies with larger, well-characterized samples are necessary.
Collapse
Affiliation(s)
- Yifan Li
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jiarui Yao
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fengzhu Li
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xi Yin
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhongbao Gao
- Geriatric Neurological Department of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Vogiatzoglou AV, Kontou PI, Bagos PG, Braliou GG. Genetic association of SLC6A3 (dopamine transporter) gene polymorphisms with personality disorders and substance abuse disorders: a systematic review and meta-analysis. Psychiatr Genet 2024; 34:93-105. [PMID: 39258346 DOI: 10.1097/ypg.0000000000000375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Personality disorders (PD) are characterized by socially dysfunctional behavioral patterns that affect patients and show higher incidence rates within families. Substance abuse disorders (SAD) are exemplified by extensive and prolonged use of substances, including alcohol, nicotine, or illegal drugs. Genetic predisposition for both PD and SAD has been reported to involve gene variants regulating dopaminergic pathways. Yet, discrepancy among reported results necessitates further elucidation of potential hereditary-related risk factors. Because both disorders impose a societal burden, knowledge on the impact of certain genetic backgrounds on these diseases could help develop evidence-based strategies for efficacious treatment approaches. MATERIALS AND METHODS In the present study a systematic review was performed, and the association between dopamine transporter gene polymorphism (SLC6A3), particularly rs28363170 entailing a 40-bp variable number tandem repeat, and PD as well as SAD was investigated recruiting meta-analysis approach. RESULTS Initial literature search for PD yielded 1577, from which nine fulfilled eligibility criteria to be used in a meta-analysis including 729 cases and 2113 controls. From the 934 studies retrieved for SAD, only 29 articles with 5221 cases and 4822 controls were used for meta-analysis. A statistically significant association was seen between rs28363170 (for the 9-repeat allele) and PD in European populations according to the co-dominant mode of inheritance. For SAD no statistically significant correlation under any mode of inheritance was observed. There was no indication of time-trend phenomena. CONCLUSION Our findings demonstrate the association of SLC6A3 gene polymorphism with PD, thus underling the need to understand neurobiological mechanisms inherent to the above disorders to guide treatment strategies under the perspective of personalized medicine.
Collapse
|
4
|
Liu M, Xue J, Cao Y, Hao Z, Wang Y, Li J, Jiang T, Shi J. The effects of Nardosinone on levodopa intervention in the treatment of Parkinson's disease. Biomed Pharmacother 2024; 174:116448. [PMID: 38522241 DOI: 10.1016/j.biopha.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The roots and rhizomes of Nardostachys jatamansi DC. are reported to be useful for the treatment of Parkinson's disease (PD). Previous research has also shown that Nardosinone, the main active component isolated from Nardostachys jatamansi DC., exhibits the potential to treat PD. AIM OF THE STUDY To investigate how the effects of Nardosinone could assist levodopa in the treatment of PD, how this process changes the intestinal flora, and to explore the effective forms of Nardosinone in the intestinal flora. MATERIAL AND METHODS We used behavioral experiments, and hematoxylin-eosin staining and immunohistochemical staining, to investigate the effects of a combination of Nardosinone and levodopa on rotenone-induced PD rats. In addition, we used LC/MS-MS to determine the levels of levodopa, 5-hydroxytryptamine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, and homovanillic acid, to investigate the effect of the intestinal flora on co-administration in the treatment of PD. LC/MS-MS was also used to detect the metabolites of Nardosinone on the gastrointestinal tract and intestinal flora. RESULTS The behavioral disorders and neuronal damage associated with PD were significantly improved following the co-administration. Analysis also revealed that the co-administration increased the levels of five neurotransmitters in the striatum, plasma and feces. In vitro experiments further demonstrated that the levels of dopamine and levodopa were increased in the intestinal flora. In total, five metabolites of Nardosinone were identified. CONCLUSION Our findings indicate that Nardosinone and its metabolites might act as a potential adjutant to enhance the efficacy of levodopa via the intestinal flora, thus expanding the therapeutic potential of the combination of Chinese and Western medicine as a treatment method for PD.
Collapse
Affiliation(s)
- Mengmeng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwen Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuangzhuang Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqing Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayuan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tingyue Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Fatima TSD, Fathima ST, Kandadai RM, Borgohain R, Sreenu B, Kutala VK. Association of Catechol-O-Methyltransferase Gene Polymorphisms and Haplotypes in the Levodopa-Induced Adverse Events in Subjects with Parkinson's Disease. Indian J Clin Biochem 2023; 38:262-274. [PMID: 37025429 PMCID: PMC10070583 DOI: 10.1007/s12291-022-01046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
The presence of dyskinesia is the most common side effect of chronic administration of levodopa in Parkinson's disease (PD) subjects. Genetic polymorphisms in levodopa metabolizing gene, catechol-O-methyl transferase (COMT), is shown to influence the inter-individual variability in drug response and adverse events. In the present study, the association of COMT rs6269, rs4633, rs4818, and rs4680 polymorphisms and haplotypes on pharmacokinetics and adverse events with levodopa was investigated in 150 PD patients. The age of onset of PD was 58.00 ± 10 yrs. The most common side effect faced by 78% of the subjects was dyskinesia. The AUC of levodopa was found to be significantly higher in subjects with dyskinesia (1695 ± 113 ng/ml/hr, p < 0.0001) than those without dyskinesia (1550 ± 122 ng/ml/hr). We found that the frequency of subjects presenting dyskinesia was significantly higher in subjects carrying variant genotype of COMT rs6269, rs4633, and rs4680 than that with wild genotype and these subjects presented higher AUC of levodopa. In addition, in subjects with dyskinesia, the AUC of levodopa was found to be significantly higher with low COMT (ACCG) haplotype. The association of COMT rs6269, COMT rs4633, COMT rs4818, and COMT rs4680 variant genotypes with the risk of dyskinesia due to levodopa therapy showed an ROC AUC of 0.67 indicating the moderate prediction of dyskinesia (p = 0.0021) with these COMT variants. In conclusion, PD subjects carrying the variant genotypes of COMT strongly influence high levodopa-induced dyskinesia. Hence the genotyping of COMT before the levodopa therapy will be useful to reduce the adverse events associated with the chronic levodopa treatment.
Collapse
Affiliation(s)
- Tasneem SD Fatima
- Department of Clinical Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Syed Tazeem Fathima
- Department of Neurology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Rupam Borgohain
- Department of Neurology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Boddupally Sreenu
- Department of Clinical Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Vijay Kumar Kutala
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| |
Collapse
|
7
|
Dulski J, Uitti RJ, Ross OA, Wszolek ZK. Genetic architecture of Parkinson’s disease subtypes – Review of the literature. Front Aging Neurosci 2022; 14:1023574. [PMID: 36337703 PMCID: PMC9632166 DOI: 10.3389/fnagi.2022.1023574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneity of Parkinson’s disease (PD) has been recognized since its description by James Parkinson over 200 years ago. The complexity of motor and non-motor PD manifestations has led to many attempts of PD subtyping with different prognostic outcomes; however, the pathophysiological foundations of PD heterogeneity remain elusive. Genetic contributions to PD may be informative in understanding the underpinnings of PD subtypes. As such, recognizing genotype-phenotype associations may be crucial for successful gene therapy. We review the state of knowledge on the genetic architecture underlying PD subtypes, discussing the monogenic forms, as well as oligo- and polygenic risk factors associated with various PD subtypes. Based on our review, we argue for the unification of PD subtyping classifications, the dichotomy of studies on genetic factors and genetic modifiers of PD, and replication of results from previous studies.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., Gdańsk, Poland
| | - Ryan J. Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Zbigniew K. Wszolek,
| |
Collapse
|
8
|
Tsuboi T, Satake Y, Hiraga K, Yokoi K, Hattori M, Suzuki M, Hara K, Ramirez-Zamora A, Okun MS, Katsuno M. Effects of MAO-B inhibitors on non-motor symptoms and quality of life in Parkinson's disease: A systematic review. NPJ Parkinsons Dis 2022; 8:75. [PMID: 35697709 PMCID: PMC9192747 DOI: 10.1038/s41531-022-00339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Non-motor symptoms (NMS) are common among patients with Parkinson's disease and reduce patients' quality of life (QOL). However, there remain considerable unmet needs for NMS management. Three monoamine oxidase B inhibitors (MAO-BIs), selegiline, rasagiline, and safinamide, have become commercially available in many countries. Although an increasing number of studies have reported potential beneficial effects of MAO-BIs on QOL and NMS, there has been no consensus. Thus, the primary objective of this study was to provide an up-to-date systematic review of the QOL and NMS outcomes from the available clinical studies of MAO-BIs. We conducted a literature search using the PubMed, Scopus, and Cochrane Library databases in November 2021. We identified 60 publications relevant to this topic. Overall, rasagiline and safinamide had more published evidence on QOL and NMS changes compared with selegiline. This was likely impacted by selegiline being introduced many years prior to the field embarking on the study of NMS. The impact of MAO-BIs on QOL was inconsistent across studies, and this was unlikely to be clinically meaningful. MAO-BIs may potentially improve depression, sleep disturbances, and pain. In contrast, cognitive and olfactory dysfunctions are likely unresponsive to MAO-BIs. Given the paucity of evidence and controlled, long-term studies, the effects of MAO-BIs on fatigue, autonomic dysfunctions, apathy, and ICD remain unclear. The effects of MAO-BIs on static and fluctuating NMS have never been investigated systematically. More high-quality studies will be needed and should enable clinicians to provide personalized medicine based on a non-motor symptom profile.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
Akbar M, Soraya GV, Ulhaq ZS, Bintang AK. A Roadmap for Future Parkinson's Pharmacogenomics in Asia. Front Aging Neurosci 2022; 14:896371. [PMID: 35656536 PMCID: PMC9152086 DOI: 10.3389/fnagi.2022.896371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- *Correspondence: Muhammad Akbar
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Zulvikar Syambani Ulhaq
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia
| | - Andi Kurnia Bintang
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|